OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 21–26

Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer

Vinicius Tribuzi, Ruben Dario Fonseca, Daniel Souza Correa, and Cleber Renato Mendonça  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 1, pp. 21-26 (2013)
http://dx.doi.org/10.1364/OME.3.000021


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Birefringent materials have many applications in optical devices. An approach to obtain optically induced birefringence is to employ a guest-host strategy, using a polymer matrix containing an azodye. However, such method normally leads to low residual birefringence. Therefore, methodologies to produce microstructures with optimized birefringence are still on demand. Here we report on the fabrication, using two-photon polymerization, and characterization of birefringent microstructures produced in a polymer blend containing an azopolymer. Such microstructures present good structural integrity and residual birefringence of approximately 35 percent, depending on the sample formulation used, which indicates this approach for the fabrication of microoptical devices.

© 2012 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(260.1440) Physical optics : Birefringence

ToC Category:
Laser Materials Processing

History
Original Manuscript: September 24, 2012
Revised Manuscript: November 13, 2012
Manuscript Accepted: November 15, 2012
Published: December 5, 2012

Citation
Vinicius Tribuzi, Ruben Dario Fonseca, Daniel Souza Correa, and Cleber Renato Mendonça, "Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer," Opt. Mater. Express 3, 21-26 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-1-21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically Induced and Erased Birefringence and Dichroism in Azoaromatic Polymers,” Appl. Phys. Lett.60(1), 4–5 (1992). [CrossRef]
  2. C. R. Mendonça, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira., “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun.273(2), 435–440 (2007). [CrossRef]
  3. S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, “Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption,” Adv. Mater.12(16), 1202–1205 (2000). [CrossRef]
  4. Z. Sekkat, J. Wood, and W. Knoll, “Reorientation Mechanism of Azobenzenes within the Trans → Cis Photoisomerization,” J. Phys. Chem.99(47), 17226–17234 (1995). [CrossRef]
  5. C. R. Mendonça, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007). [CrossRef]
  6. J. F. Zu, J. Y. Guo, J. H. Si, G. D. Qian, M. Wang, and K. Hirao, “Effects of writing conditions on the photoinduced birefringence in azodye-doped polymers by a femtosecond laser,” Chem. Phys. Lett.421(1-3), 101–105 (2006). [CrossRef]
  7. A. Dhanabalan, D. T. Balogh, C. R. Mendonça, A. Riul, C. J. L. Constantino, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Mixed Langmuir and Langmuir-Blodgett films of disperse red-13 dye-derivatized methacrylic homopolymer and cadmium stearate,” Langmuir14(13), 3614–3619 (1998). [CrossRef]
  8. H. Xia, W. Y. Zhang, F. F. Wang, D. Wu, X. W. Liu, L. Chen, Q. D. Chen, Y. G. Ma, and H. B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett.95(8), 083118 (2009). [CrossRef]
  9. O. N. Oliveira, D. S. Dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonça, “Optical storage and surface-relief gratings in azobenzene-containing nanostructured films,” Adv. Colloid Interface Sci.116(1-3), 179–192 (2005). [CrossRef] [PubMed]
  10. S. W. Magennis, F. S. Mackay, A. C. Jones, K. M. Tait, and P. J. Sadler, “Two-photon-induced photoisomerization of an azo dye,” Chem. Mater.17(8), 2059–2062 (2005). [CrossRef]
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  12. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  13. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999). [CrossRef]
  14. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  15. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011). [CrossRef]
  16. H. B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett.79(10), 1411–1413 (2001). [CrossRef]
  17. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonça, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron.18(1), 176–186 (2012). [CrossRef]
  18. D. S. Correa, V. Tribuzi, M. R. Cardoso, L. Misoguti, and C. R. Mendonça, “Selective excitation through tapered silica fibers of fluorescent two-photon polymerized structures,” Appl. Phys., A Mater. Sci. Process.102(2), 435–439 (2011). [CrossRef]
  19. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010). [CrossRef] [PubMed]
  20. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011). [CrossRef] [PubMed]
  21. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004). [CrossRef]
  22. F. F. Dall'Agnol, O. N. Oliveira, and J. A. Giacometti, “Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers,” Macromolecules39(14), 4914–4919 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited