OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 27–34

Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology

Xi Chen, Baohua Jia, Jhantu Kumar Saha, Nicholas Stokes, Qi Qiao, Yongqian Wang, Zhengrong Shi, and Min Gu  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 1, pp. 27-34 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strong scattering intensities in a broadband wavelength range from metallic nanoparticles are essential for diverse photonics applications. Conventional ways of controlling particle scattering are via the control of the size, shape and embedding dielectric environment. In this paper we demonstrate that tailoring the particle surface roughness is another effective way of controlling particle scattering. Roughly surfaced lumpy silver nanoparticles, which have anisotropic surface topography, are realized by a controlled shape- and size-selective wet chemical method. Through the systematic comparison with the smoothly surfaced nanoparticles of the same size and size distribution, we verify both experimentally and theoretically that the lumpy nanoparticles produce large-angle broadband plasmonic scattering due to their unique surface anisotropic structure.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: August 28, 2012
Revised Manuscript: December 9, 2012
Manuscript Accepted: December 10, 2012
Published: December 11, 2012

Xi Chen, Baohua Jia, Jhantu Kumar Saha, Nicholas Stokes, Qi Qiao, Yongqian Wang, Zhengrong Shi, and Min Gu, "Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology," Opt. Mater. Express 3, 27-34 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  2. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  6. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010). [CrossRef]
  7. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010). [CrossRef]
  8. N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012). [CrossRef]
  9. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  10. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  11. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano5(2), 959–967 (2011). [CrossRef] [PubMed]
  12. N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express20(S5Suppl 5), A694–A705 (2012). [CrossRef] [PubMed]
  13. Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012). [CrossRef]
  14. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  15. J. P. Singh, T. E. Lanier, H. Zhu, W. M. Dennis, R. A. Tripp, and Y. P. Zhao, “Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays,” J. Phys. Chem. C116(38), 20550–20557 (2012). [CrossRef]
  16. Q. Zhou, Y. P. He, J. Abell, Z. J. Zhang, and Y. P. Zhao, “Optical properties and surface enhanced Raman scattering of L-shaped silver nanorod arrays,” J. Phys. Chem. C115(29), 14131–14140 (2011). [CrossRef]
  17. N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small1(8-9), 875–882 (2005). [CrossRef] [PubMed]
  18. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B105(19), 4065–4067 (2001). [CrossRef]
  19. D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng, and L. Huang, “Wet chemical synthesis of silver nanowire thin films at ambient temperature,” Chem. Mater.16(5), 872–876 (2004). [CrossRef]
  20. M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc.132(1), 268–274 (2010). [CrossRef] [PubMed]
  21. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  22. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  23. Lumerical, “FDTD solutions” (Lumerical, Toronto, Canada, accessed August 2012), http://www.lumerical.com/tcad-products/fdtd/ .
  24. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-Cryst. Solids354(19-25), 2488–2491 (2008). [CrossRef]
  25. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  26. C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008). [CrossRef]
  27. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  28. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited