OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 47–53

Complex strain distribution in individual facetted InGaN/GaN nano-columnar heterostructures

R. Bardoux, M. Funato, A. Kaneta, Y. Kawakami, A. Kikuchi, and K. Kishino  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 1, pp. 47-53 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Selective area growth technique is very promising for the realization of optoelectronic nano-devices based on InGaN/GaN quantum disks, as it allows precise positioning of the nano-objects on the substrate. However, this fabrication method induces a pronounced pyramidal shape of the nano-columnar heterostructures. To understand how the optical properties of these heterostructures are affected by this shape, we investigated the linear polarization of the luminescence from 0-dimensional localization centers included in their active layer. Our experimental results and our simulation show that a complex strain distribution exist in the active layer and also that quantum dot-like objects can be used to probe the local strain distribution through nano-scale heterostructures.

© 2012 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: November 8, 2012
Revised Manuscript: December 9, 2012
Manuscript Accepted: December 9, 2012
Published: December 12, 2012

R. Bardoux, M. Funato, A. Kaneta, Y. Kawakami, A. Kikuchi, and K. Kishino, "Complex strain distribution in individual facetted InGaN/GaN nano-columnar heterostructures," Opt. Mater. Express 3, 47-53 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer-Verlag, Heidelberg, 2000).
  2. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater.6(12), 951–956 (2007). [CrossRef] [PubMed]
  3. Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett.91(18), 181113 (2007). [CrossRef]
  4. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors40(5), 605–610 (2006). [CrossRef]
  5. M. Funato, M. Ueda, D. Inoue, Y. Kawakami, Y. Narukawa, and T. Mukai, “Experimental and theoretical considerations of polarization field direction in semipolar InGaN/GaN quantum wells,” Appl. Phys. Express3(7), 071001–071004 (2010). [CrossRef]
  6. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024015 (2012). [CrossRef]
  7. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041521 (2012). [CrossRef]
  8. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  9. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett.91(9), 091110–091113 (2007). [CrossRef]
  10. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantumwells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  11. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (112-bar2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100(2), 021104–021108 (2012). [CrossRef]
  12. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, “InGaN/GaN Nanocolumn LEDs Emitting from Blue to Red,” Proc. SPIE6473, 64730T (2007). [CrossRef]
  13. S. Ishizawa, K. Kishino, R. Araki, A. Kikuchi, and S. Sugimoto, “Optically pumped green (530-560 nm) stimulated emissions from InGaN/GaN multiple-quantum-well triangular-lattice nanocolumn arrays,” Appl. Phys. Express4(5), 055001–055004 (2011). [CrossRef]
  14. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys.36(Part 2, No. 4B), L459–L462 (1997). [CrossRef]
  15. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B82(20), 205328 (2010). [CrossRef]
  16. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett.96(23), 231104 (2010). [CrossRef]
  17. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate,” Jpn. J. Appl. Phys.43(No. 12A), L1524–L1526 (2004). [CrossRef]
  18. K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth311(7), 2063–2068 (2009). [CrossRef]
  19. R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization centre formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B79(15), 155307 (2009). [CrossRef]
  20. J.- Shi, S. Zhang, M. Yang, S.- Zhu, and M. Zhang, “Light emission from several-atom In-N clusters in wurtzite Ga-rich InGaN alloys and InGaN/GaN strained quantum wells,” Acta Mater.59(7), 2773–2782 (2011). [CrossRef]
  21. R. Bardoux, T. Guillet, B. Gil, P. Lefebvre, T. Bretagnon, T. Taliercio, S. Rousset, and F. Semond, “Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory,” Phys. Rev. B77(23), 235315 (2008). [CrossRef]
  22. M. Feneberg, F. Lipski, R. Sauer, K. Thonke, P. Brückner, B. Neubert, T. Wunderer, and F. Scholz, “Polarized light emission from semipolar GaInN quantum wells on {1-101} GaN facets,” J. Appl. Phys.101(5), 053530–053536 (2007). [CrossRef]
  23. D. Simeonov, E. Feltin, F. Demangeot, C. Pinquier, J.-F. Carlin, R. Butté, J. Frandon, and N. Grandjean, “Strain relaxation of AlN epilayers for Stranski–Krastanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Cryst. Growth299(2), 254–258 (2007). [CrossRef]
  24. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganière, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature438(7067), 479–482 (2005). [CrossRef] [PubMed]
  25. M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, and T. Mukai, “Polarization switching phenomena in semipolar InxGa1−xN/GaN quantum well active layers,” Phys. Rev. B78(23), 233303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited