OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 54–66

Synthesis of CIGS thin film by solvothermal route

Hsiang-Chen Wang, Chao-Chi Wang, Shih-Wei Feng, Li-His Chen, and Yen-Sheng Lin  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 1, pp. 54-66 (2013)
http://dx.doi.org/10.1364/OME.3.000054


View Full Text Article

Enhanced HTML    Acrobat PDF (5177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study presents the synthesis of copper indium gallium (di)selenide (CIGS) films by a solvothermal method. Four factors in CIGS synthesis are considered: In/Ga ratios, hydrogen contents during thermal annealing, thermal annealing temperatures, and annealing times. Experimental results show that the optimal parameters for CIGS film synthesis are the following: proportion of Cu:In:Ga:Se = 1:0.7:0.3:2; hydrogen content during thermal annealing, 5%; thermal annealing temperature, 600 °C; and annealing time, 100 min. The largest crystal grain size of a CIGS film synthesized using these optimal parameters is about 100 nm. The crystal grain size is also found to be inversely proportional to sheet resistance. This relationship holds true because a smaller crystal indicates more grain boundaries and defects. Thus, an electron encounters more barriers in the transmission process, and electric conductivity decreases.

© 2012 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(310.3840) Thin films : Materials and process characterization
(160.5335) Materials : Photosensitive materials

ToC Category:
Photovoltaics

History
Original Manuscript: November 20, 2012
Revised Manuscript: December 12, 2012
Manuscript Accepted: December 12, 2012
Published: December 13, 2012

Citation
Hsiang-Chen Wang, Chao-Chi Wang, Shih-Wei Feng, Li-His Chen, and Yen-Sheng Lin, "Synthesis of CIGS thin film by solvothermal route," Opt. Mater. Express 3, 54-66 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-1-54


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000). [CrossRef]
  2. M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005). [CrossRef]
  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011). [CrossRef]
  4. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010). [CrossRef]
  5. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008). [CrossRef]
  6. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18(S1), A73–A78 (2010). [CrossRef]
  7. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008). [CrossRef]
  8. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004). [CrossRef]
  9. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003). [CrossRef]
  10. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005). [CrossRef]
  11. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011). [CrossRef]
  12. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004). [CrossRef]
  13. K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).
  14. Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005). [CrossRef]
  15. J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009). [CrossRef]
  16. S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011). [CrossRef]
  17. M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012). [CrossRef]
  18. J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, J. Ianno, and J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction” (University of Nebraska–Lincoln, 2010).
  19. E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010). [CrossRef]
  20. J. F. Guillemoles, “Stability of Cu(In,Ga)Se2 solar cells: a thermodynamic approach,” Thin Solid Films 361–362, 338–345 (2000). [CrossRef]
  21. K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004). [CrossRef]
  22. J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008). [CrossRef]
  23. M. R. Robinson and M. R. Roscheisen (Inventors), Nanosolar Inc. (Assignee), U.S. Patent No. 7604843B1 (Oct. 20, 2009).
  24. J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010). [CrossRef]
  25. Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012). [CrossRef]
  26. D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011). [CrossRef]
  27. F. B. Dejene, “The structural and material properties of CuInSe2 and CuInGaSe2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications,” Sol. Energy Mater. Sol. Cells 93(5), 577–582 (2009). [CrossRef]
  28. I. H. Choi and D. H. Lee, “Preparation of CuInGaSe2 films by metalorganic chemical vapor deposition using three precursors,” Thin Solid Films 515(11), 4778–4782 (2007). [CrossRef]
  29. S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998). [CrossRef]
  30. A. Yamada, H. Miyazaki, R. Mikami, and M. Konagail, “Improved performance of Cu(InGa)Se2 thin film solar cells with high Ga composition using rapid thermal annealing process,” in 3rd World Conference on Phorovoliaic Energy Conversion, 2859–2863. Osaka, Japan (2003).
  31. M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011). [CrossRef]
  32. Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010). [CrossRef]
  33. L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009). [CrossRef]
  34. M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009). [CrossRef]
  35. Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited