OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1600–1607

Bidirectional two colored light emission from stress-activated ZnS-microparticles-embedded polydimethylsiloxane elastomer films

Soon Moon Jeong, Seongkyu Song, Kyung-Il Joo, Jaewook Jeong, and Seok-Hwan Chung  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1600-1607 (2013)

View Full Text Article

Acrobat PDF (4858 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bidirectional two-colored mechanoluminescent light emission has been demonstrated by unifying two polydimethylsiloxane elastomer layers functionalized with zinc sulfide doped with Cu (ZnS:Cu) or Cu and Mn (ZnS:Cu,Mn). The bilayered composite films are simply fabricated by dispensing uncured ZnS:Cu,Mn + PDMS onto previously spin-coated and hardened ZnS:Cu + PDMS film. The robust PDMS-PDMS bonding yields a film which can simultaneously emit light with color coordinates of (0.25, 0.56) and (0.50, 0.48), similar to the intrinsic colors of ZnS:Cu and ZnS:Cu,Mn, respectively. Composite films can emit light in upper and lower directions without fracture when it is stretched.

© 2013 OSA

OCIS Codes
(160.0160) Materials : Materials
(160.2540) Materials : Fluorescent and luminescent materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: August 2, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 2, 2013
Published: September 5, 2013

Soon Moon Jeong, Seongkyu Song, Kyung-Il Joo, Jaewook Jeong, and Seok-Hwan Chung, "Bidirectional two colored light emission from stress-activated ZnS-microparticles-embedded polydimethylsiloxane elastomer films," Opt. Mater. Express 3, 1600-1607 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. P. Chandra, Luminescence of Solids (Plenum, 1998), Chap. 10.
  2. G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967). [CrossRef]
  3. N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982). [CrossRef]
  4. A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977). [CrossRef]
  5. L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992). [CrossRef]
  6. Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995). [CrossRef] [PubMed]
  7. Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990). [CrossRef]
  8. N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006). [CrossRef] [PubMed]
  9. C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008). [CrossRef]
  10. N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011). [CrossRef] [PubMed]
  11. C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999). [CrossRef]
  12. C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004). [CrossRef]
  13. J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013). [CrossRef] [PubMed]
  14. J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013). [CrossRef] [PubMed]
  15. C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999). [CrossRef]
  16. C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000). [CrossRef]
  17. J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003). [CrossRef]
  18. J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005). [CrossRef]
  19. J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007). [CrossRef]
  20. S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013). [CrossRef]
  21. S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:. [CrossRef]
  22. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998). [CrossRef] [PubMed]
  23. D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999). [CrossRef]
  24. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000). [CrossRef] [PubMed]
  25. K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006). [CrossRef] [PubMed]
  26. H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998). [CrossRef]
  27. H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000). [CrossRef]
  28. M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000). [CrossRef]
  29. T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000). [CrossRef]
  30. H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004). [CrossRef] [PubMed]
  31. S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005). [CrossRef]
  32. M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited