OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1624–1631

Interband cascade lasers with AlGaAsSb bulk cladding layers

Robert Weih, Adam Bauer, Martin Kamp, and Sven Höfling  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1624-1631 (2013)
http://dx.doi.org/10.1364/OME.3.001624


View Full Text Article

Enhanced HTML    Acrobat PDF (1813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interband cascade lasers are promising candidates to cover a wide spectral range in the mid infrared spectral region with high performance devices. In this paper, we report on lasers where the cladding layers consist of quaternary bulk material (AlGaAsSb) instead of InAs/AlSb superlattices. The bulk claddings provide efficient mode confinement due to their low refractive index, comparable heat conductivity and a reduced current spreading. Broad area devices fabricated from laser layers with 5 cascades showed threshold current densities of 220 A/cm2 and narrow ridges operated up to 45 °C in continuous wave mode.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.6000) Materials : Semiconductor materials
(250.0250) Optoelectronics : Optoelectronics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Semiconductors

History
Original Manuscript: July 9, 2013
Revised Manuscript: August 25, 2013
Manuscript Accepted: August 26, 2013
Published: September 6, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Citation
Robert Weih, Adam Bauer, Martin Kamp, and Sven Höfling, "Interband cascade lasers with AlGaAsSb bulk cladding layers," Opt. Mater. Express 3, 1624-1631 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1624


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996). [CrossRef]
  2. C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997). [CrossRef]
  3. C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999). [CrossRef]
  4. K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys.41(Part 2, No. 11B), L1279–L1280 (2002). [CrossRef]
  5. Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009). [CrossRef]
  6. H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett.59(10), 1165 (1991). [CrossRef]
  7. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012). [CrossRef]
  8. K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012). [CrossRef]
  9. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004). [CrossRef]
  10. C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys.113(4), 043112 (2013). [CrossRef]
  11. S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4μm optoelectronic device applications,” J. Appl. Phys.61(10), 4869 (1987). [CrossRef]
  12. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).
  13. W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H. [CrossRef]
  14. I. Vurgaftman, W. W. Bewley, C. L. Canedy, J. R. Lindle, C. S. Kim, M. Kim, and J. R. Meyer, “High-temperature interband cascade lasers,” U.S. Patent Application 12/402, 627, filed Mar. 12, 2009.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited