OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1632–1640

Thermal conductivity tensors of the cladding and active layers of antimonide infrared lasers and detectors

Chuanle Zhou, I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, A. Hoang, A. Haddadi, M. Razeghi, and M. Grayson  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1632-1640 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (741 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The in-plane and cross-plane thermal conductivities of the cladding layers and active quantum wells of interband cascade lasers and type-II superlattice infrared detector are measured by the 2-wire 3ω method. The layers investigated include InAs/AlSb superlattice cladding layers, InAs/GaInSb/InAs/AlSb W-active quantum wells, an InAs/GaSb superlattice absorber, an InAs/GaSb/AlSb M-structure, and an AlAsSb digital alloy. The in-plane thermal conductivity of the InAs/AlSb superlattice is 4–5 times higher than the cross-plane value. The isotropic thermal conductivity of the AlAsSb digital alloy matches a theoretical expectation, but it is one order of magnitude lower than the only previously-reported experimental value.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.6810) Lasers and laser optics : Thermal effects
(260.3060) Physical optics : Infrared
(310.6870) Thin films : Thin films, other properties

ToC Category:
IR Materials

Original Manuscript: July 1, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 5, 2013
Published: September 6, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Chuanle Zhou, I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, A. Hoang, A. Haddadi, M. Razeghi, and M. Grayson, "Thermal conductivity tensors of the cladding and active layers of antimonide infrared lasers and detectors," Opt. Mater. Express 3, 1632-1640 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011). [CrossRef]
  2. E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012). [CrossRef] [PubMed]
  3. D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).
  4. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011). [CrossRef]
  5. C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013). [CrossRef]
  6. T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001). [CrossRef]
  7. T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001). [CrossRef]
  8. T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002). [CrossRef]
  9. C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012). [CrossRef]
  10. C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013). [CrossRef]
  11. J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited