OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1641–1646

Thermal shifts of Sm3+ lines in YAG and cubic sesquioxide ceramics

Aurelia Lupei, Voicu Lupei, and Cristina Gheorghe  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1641-1646 (2013)
http://dx.doi.org/10.1364/OME.3.001641


View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparative analysis of the thermal shift of Sm3+ ion zero-phonon lines in YAG and sesquioxide (Y2O3 and Sc2O3) ceramics is presented. The Sm3+ lines in YAG show small red shifts, whereas in sesquioxides large blue shifts in absorption (up to ~9 cm−1 Y2O3 or ~6 cm−1 Sc2O3), and blue or red shifts in emission are observed for the C2 centers, while the C3i magnetic-dipole allowed lines exhibit small red shift. The data are analyzed in terms of competition between the dynamic (due to electron-phonon interaction) and the static shifts produced especially by the thermal local structural changes.

© 2013 OSA

OCIS Codes
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission

ToC Category:
Laser Materials

History
Original Manuscript: July 25, 2013
Revised Manuscript: August 24, 2013
Manuscript Accepted: August 26, 2013
Published: September 10, 2013

Citation
Aurelia Lupei, Voicu Lupei, and Cristina Gheorghe, "Thermal shifts of Sm3+ lines in YAG and cubic sesquioxide ceramics," Opt. Mater. Express 3, 1641-1646 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1641


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999). [CrossRef]
  2. Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998). [CrossRef]
  3. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982). [CrossRef]
  4. H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006). [CrossRef]
  5. A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).
  6. R. Huß, R. Wilhelm, C. Kolleck, J. Neumann, and D. Kracht, “Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding,” Opt. Express18(12), 13094–13101 (2010). [CrossRef] [PubMed]
  7. A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012). [CrossRef]
  8. C. M. Dobson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series:Calculated emission rates and oscillator strengths,” Phys. Rev. B86(12), 125102 (2012). [CrossRef]
  9. C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012). [CrossRef]
  10. D. E. McCumber and M. D. Sturge, “Linewidth and Temperature Shift of the R Lines in Ruby,” J. Appl. Phys.34(6), 1682–1684 (1963). [CrossRef]
  11. T. Kushida, “Linewidths and thermal shifts of spectral lines in neodimium-doped Yttium Aluminium Garnet and Calcium Fluorophosphate,” Phys. Rev.185(2), 500–508 (1969). [CrossRef]
  12. Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987). [CrossRef]
  13. A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010). [CrossRef]
  14. W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012). [CrossRef]
  15. S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006). [CrossRef]
  16. W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013). [CrossRef]
  17. A. Lupei, C. Tiseanu, C. Gheorghe, ”Electronic structure and energy transfer processes of Sm3+ in sesquioxides,” presented at ICOM 2012, Belgrad, Serbia, 3–6 Sept, 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited