OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1647–1657

Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals

Morten Bache, Hairun Guo, and Binbin Zhou  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1647-1657 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here investigate the so-called noncritical SHG case, where no phase matching can be achieved but as a compensation the largest quadratic nonlinearities are exploited. A self-defocusing temporal soliton can be excited if the cascading nonlinearity is larger than the competing material self-focusing nonlinearity, and we define a suitable figure of merit to screen a wide range of mid-IR dielectric and semiconductor materials with large effective second-order nonlinearities deff. The best candidates have simultaneously a large bandgap and a large deff. We show selected realistic numerical examples using one of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form spanning the near-IR to the end of the mid-IR (nearly 4 octaves).

© 2013 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optical Materials

Original Manuscript: June 17, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: August 30, 2013
Published: September 12, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Morten Bache, Hairun Guo, and Binbin Zhou, "Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals," Opt. Mater. Express 3, 1647-1657 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008). [CrossRef] [PubMed]
  2. M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007). [CrossRef] [PubMed]
  3. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33, 2901–2903 (2008). [CrossRef] [PubMed]
  4. S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009). [CrossRef]
  5. S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett.34, 3839–3841 (2009). [CrossRef] [PubMed]
  6. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett.10, 624–626 (1985). [CrossRef] [PubMed]
  7. F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012). [CrossRef]
  8. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007). [CrossRef] [PubMed]
  9. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010). [CrossRef] [PubMed]
  10. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μ J at 100 kHz,” Opt. Lett.35, 3204–3206 (2010). [CrossRef] [PubMed]
  11. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36, 2755–2757 (2011). [CrossRef] [PubMed]
  12. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. PDPA10.
  13. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett.71, 1994–1997 (1993). [CrossRef] [PubMed]
  14. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photon.4, 822–832 (2010). [CrossRef]
  15. B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012). [CrossRef] [PubMed]
  16. L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz.5, 331 (1967). [JETP Lett. 5, 272–275 (1967)].
  17. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4, 329–334 (1972). [CrossRef]
  18. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992). [CrossRef] [PubMed]
  19. M. L. Sundheimer, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched ktp waveguides as a result of cascaded second-order processes,” Opt. Lett.18, 1397–1399 (1993). [CrossRef] [PubMed]
  20. X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2): χ(2)nonlinearity,” Opt. Lett.24, 1777–1779 (1999). [CrossRef]
  21. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002). [CrossRef]
  22. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007). [CrossRef] [PubMed]
  23. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, Berlin, 2005).
  24. V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunneman, and K. T. Zawilski, “Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP2[invited],” Opt. Mater. Express1, 1292–1300 (2011). [CrossRef]
  25. S. Das, G. C. Bhar, S. Gangopadhyay, and C. Ghosh, “Linear and nonlinear optical properties of zngep2crystal for infrared laser device applications: Revisited,” Appl. Opt.42, 4335–4340 (2003). [CrossRef] [PubMed]
  26. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008). [CrossRef]
  27. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997). [CrossRef]
  28. V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009). [CrossRef]
  29. S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, “PbIn6Te10: new nonlinear crystal for three-wave interactions with transmission extending from 1.7 to 25 μm,” Opt. Mater. Express1, 1286–1291 (2011). [CrossRef]
  30. R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011). [CrossRef]
  31. H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000). [CrossRef]
  32. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008). [CrossRef]
  33. K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull.42, 1881–1887 (2007). [CrossRef]
  34. X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009). [CrossRef]
  35. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, “Generalized Miller formulæ,” Opt. Express18, 6613–6620 (2010). [CrossRef] [PubMed]
  36. M. Sheik-Bahae and E. W. V. Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,”, vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318. [CrossRef]
  37. R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996). [CrossRef]
  38. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B24, 2752–2762 (2007). [erratum: ibid., 27, 2505 (2010)]. [CrossRef]
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), 4th ed.
  40. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135 (2006). [CrossRef]
  41. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express16, 3273–3287 (2008). [CrossRef] [PubMed]
  42. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A82, 063806 (2010). [CrossRef]
  43. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express19, 22557–22562 (2011). [CrossRef] [PubMed]
  44. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B21, 1981–2007 (2004). [CrossRef]
  45. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett.31, 1881–1883 (2006). [CrossRef] [PubMed]
  46. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express18, 14778–14787 (2010). [CrossRef] [PubMed]
  47. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985). [CrossRef]
  48. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997). [CrossRef]
  49. H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B30, 494–504 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited