OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1660–1673

Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction

Wei-Er Lu, Yong-Liang Zhang, Mei-Ling Zheng, Yan-Peng Jia, Jie Liu, Xian-Zi Dong, Zhen-Sheng Zhao, Chao-Bo Li, Yang Xia, Tian-Chun Ye, and Xuan-Ming Duan  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1660-1673 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amino-terminated ionic liquid assisted multiphoton photoreduction (IL-MPR) was developed for the direct writing of subwavelength gold nanostructures in AuCl4- ions aqueous solution by femtosecond laser. It was revealed that the carbon chain length was crucial for morphology and size control of gold nanostructures. A 228 nm width of gold nanostructure, which was beyond the optical diffraction limit, was fabricated by the matching between IL and the power and scanning speed of the laser beam. The measured conductivity is of the same order as that of bulk gold. Furthermore, we successfully fabricated a U-shaped terahertz planar metamaterial whose spectral response is consistent with the theoretical expectation. The IL-MPR nanofabrication protocol is expected to play an important role in the fabrication of fine metallic micro/nanostructures for applications in microelectromechanical systems, nanoelectronics and nanophotonics.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.4180) Nonlinear optics : Multiphoton processes
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Materials Processing

Original Manuscript: May 14, 2013
Revised Manuscript: July 31, 2013
Manuscript Accepted: August 1, 2013
Published: September 17, 2013

Wei-Er Lu, Yong-Liang Zhang, Mei-Ling Zheng, Yan-Peng Jia, Jie Liu, Xian-Zi Dong, Zhen-Sheng Zhao, Chao-Bo Li, Yang Xia, Tian-Chun Ye, and Xuan-Ming Duan, "Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction," Opt. Mater. Express 3, 1660-1673 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013). [CrossRef]
  2. K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013). [CrossRef]
  3. C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013). [CrossRef] [PubMed]
  4. F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009). [CrossRef]
  5. B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009). [CrossRef]
  6. S. K. Bhattacharya and R. R. Tummala, “Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates,” J. Mater. Sci. Mater. Electron.11(3), 253–268 (2000). [CrossRef]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008). [CrossRef] [PubMed]
  8. C. D. Petruczok and K. K. Gleason, “Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates,” Adv. Mater.24(48), 6445–6450 (2012). [CrossRef] [PubMed]
  9. X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012). [CrossRef]
  10. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999). [CrossRef]
  11. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  12. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999). [CrossRef]
  13. X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007). [CrossRef]
  14. W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011). [CrossRef]
  15. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008). [CrossRef]
  16. C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007). [CrossRef]
  17. L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009). [CrossRef] [PubMed]
  18. D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007). [CrossRef]
  19. J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007). [CrossRef]
  20. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  21. P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000). [CrossRef]
  22. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002). [CrossRef]
  23. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004). [CrossRef]
  24. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003). [CrossRef]
  25. T. Baldacchini, A. C. Pons, J. Pons, C. N. Lafratta, J. T. Fourkas, Y. Sun, and M. Naughton, “Multiphoton laser direct writing of two-dimensional silver structures,” Opt. Express13(4), 1275–1280 (2005). [CrossRef] [PubMed]
  26. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011). [CrossRef] [PubMed]
  27. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006). [CrossRef]
  28. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006). [CrossRef]
  29. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009). [PubMed]
  30. B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010). [CrossRef] [PubMed]
  31. B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012). [CrossRef] [PubMed]
  32. T. Welton, “Room-temperature ionic liquids. solvents for synthesis and catalysis,” Chem. Rev.99(8), 2071–2084 (1999). [CrossRef] [PubMed]
  33. L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004). [CrossRef]
  34. W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012). [CrossRef] [PubMed]
  35. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010). [CrossRef] [PubMed]
  36. Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009). [CrossRef]
  37. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010). [CrossRef] [PubMed]
  38. Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012). [CrossRef] [PubMed]
  39. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited