OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1674–1686

Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses

Ričardas Buividas, Sima Rekštytė, Mangirdas Malinauskas, and Saulius Juodkazis  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1674-1686 (2013)
http://dx.doi.org/10.1364/OME.3.001674


View Full Text Article

Enhanced HTML    Acrobat PDF (3326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report fabrication of sub-100 nm resolution structures by ablation on the surface of sapphire using femtosecond laser pulses. A single 50–70 nm wide groove was recorded by laser ablation via a controlled ripple formation on the surface. Ripples are created by breakdown due to a sphere-to-plane formation of an ionisation below surface in a similar way as the bulk ripples. Different thresholds for the ripples formed parallel and perpendicular to direction of the laser scan were observed. In a sol-gel photo-polymer SZ2080 and thermo-polymer polydimethylsiloxane, free-standing 3D structures were formed without use of two-photon absorbing photo-sensitizers. Both cases of the surface and bulk structuring were achieved via a controlled avalanche, which dominated ionisation of materials.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3850) Other areas of optics : Materials processing
(160.1245) Materials : Artificially engineered materials

ToC Category:
Laser Materials Processing

History
Original Manuscript: May 20, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: August 29, 2013
Published: September 18, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Citation
Ričardas Buividas, Sima Rekštytė, Mangirdas Malinauskas, and Saulius Juodkazis, "Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses," Opt. Mater. Express 3, 1674-1686 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000). [CrossRef]
  2. C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007). [CrossRef]
  3. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010). [CrossRef]
  4. M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011). [CrossRef] [PubMed]
  5. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.2, 132–134 (1997). [CrossRef]
  6. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001). [CrossRef] [PubMed]
  7. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012). [CrossRef]
  8. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  9. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006). [CrossRef]
  10. M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photon.3, 450–452 (2009). [CrossRef]
  11. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008). [CrossRef]
  12. J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007). [CrossRef]
  13. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003). [CrossRef]
  14. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003). [CrossRef]
  15. A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462 (2003). [CrossRef]
  16. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009). [CrossRef]
  17. M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013). [CrossRef]
  18. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003). [CrossRef]
  19. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006). [CrossRef]
  20. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36, 3688 (1965). [CrossRef]
  21. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008). [CrossRef]
  22. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011). [CrossRef]
  23. 3DPoli@gmail.com.
  24. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010). [CrossRef]
  25. E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications(Pan Stanford Publishing, USA, 2011).
  26. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003). [CrossRef]
  27. J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983). [CrossRef]
  28. R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).
  29. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B27, 1077–1082 (2010). [CrossRef]
  30. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011). [CrossRef]
  31. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010). [CrossRef]
  32. F. Liang, R. Vallee, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20, 4389–4396 (2012). [CrossRef] [PubMed]
  33. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011). [CrossRef]
  34. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009). [CrossRef]
  35. R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012). [CrossRef]
  36. Y. Liao, Y. L. Shen, L. L. Qiao, D. P. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38, 187–189 (2013). [CrossRef] [PubMed]
  37. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011). [CrossRef]
  38. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007). [CrossRef] [PubMed]
  39. R. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett.33, 1312–1314 (2008). [CrossRef] [PubMed]
  40. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009). [CrossRef]
  41. J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011). [CrossRef] [PubMed]
  42. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010). [CrossRef] [PubMed]
  43. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010). [CrossRef]
  44. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010). [CrossRef]
  45. S. Rekštyte, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express21, 17028 (2013). [CrossRef]
  46. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17, 20945–20951 (2009). [CrossRef] [PubMed]
  47. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005). [CrossRef]
  48. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010). [CrossRef]
  49. C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004). [CrossRef]
  50. M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012). [CrossRef]
  51. R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004). [CrossRef]
  52. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007). [CrossRef]
  53. K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited