OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1698–1704

Fabrication of a liquid crystal light modulator by use of femtosecond-laser-induced nanoripples

Yang Liao, Lingling Qiao, Zhaohui Wang, Min Wang, Lianqing Liu, Koji Sugioka, and Ya Cheng  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1698-1704 (2013)
http://dx.doi.org/10.1364/OME.3.001698


View Full Text Article

Enhanced HTML    Acrobat PDF (1727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on fabrication of a liquid crystal (LC) electro-optic modulator in fused silica by three-dimensional (3D) femtosecond laser micromachining. The LC light modulator consists of a LC cell, four embedded microelectrodes and a buried optical waveguide, which are defined in the glass substrate simultaneously by femtosecond laser direct writing. The fabricated LC cell enables homogeneous alignment of LC molecules owing to the femtosecond-laser-induced nanoripples on the inner wall of LC cell. The embedded microelectrodes give rise to homogeneous electric field in the LC cell, enabling efficient control of the orientation of LC molecules. The 3D integration of microoptical, microelectrical and microfluidic components in a single glass chip enables rapid prototyping of multifunctional devices in a monolithic substrate.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(160.3710) Materials : Liquid crystals
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Materials Processing

History
Original Manuscript: August 7, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: September 18, 2013
Published: September 23, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Citation
Yang Liao, Lingling Qiao, Zhaohui Wang, Min Wang, Lianqing Liu, Koji Sugioka, and Ya Cheng, "Fabrication of a liquid crystal light modulator by use of femtosecond-laser-induced nanoripples," Opt. Mater. Express 3, 1698-1704 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17(15), 12546–12554 (2009). [CrossRef] [PubMed]
  3. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001). [CrossRef] [PubMed]
  4. Y. Liao, Y. Ju, L. Zhang, F. He, Q. Zhang, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing,” Opt. Lett.35(19), 3225–3227 (2010). [CrossRef] [PubMed]
  5. Y. Liao, J. Xu, H. Sun, J. Song, X. Wang, and Y. Cheng, “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Appl. Surf. Sci.254(21), 7018–7021 (2008). [CrossRef]
  6. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010). [CrossRef] [PubMed]
  7. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip9(2), 311–318 (2009). [CrossRef] [PubMed]
  8. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011). [CrossRef]
  9. K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012). [CrossRef] [PubMed]
  10. Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevičius, P. Kazansky, O. Chappuis, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micro Nanoeng.7(1), 1–10 (2012). [CrossRef]
  11. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett.80(6), 1088 (2002). [CrossRef]
  12. A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express13(1), 32–37 (2005). [CrossRef] [PubMed]
  13. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181 (2004). [CrossRef]
  14. J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science302(5653), 2094–2097 (2003). [CrossRef] [PubMed]
  15. O. Castany and L. Dupont, “Liquid crystal micro-cells: collective fabrication of individual micro-cells,” J. Micromech. Microeng.20(6), 065019 (2010). [CrossRef]
  16. Y. Liao, M. Huang, Y. F. Ju, F. F. Luo, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Alignment of liquid crystal molecules in a micro-cell fabricated by femtosecond laser,” Chem. Phys. Lett.498(1-3), 188–191 (2010). [CrossRef]
  17. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002). [CrossRef]
  18. D. W. Berreman, “Solid surface shape and alignment of adjacent nematic liquid-crystals,” Phys. Rev. Lett.28(26), 1683–1686 (1972). [CrossRef]
  19. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt.23(21), 3911–3915 (1984). [CrossRef] [PubMed]
  20. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004). [CrossRef] [PubMed]
  21. K. Hirabayashi, “Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation,” Appl. Opt.44(17), 3552–3559 (2005). [CrossRef] [PubMed]
  22. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28(1), 55–57 (2003). [CrossRef] [PubMed]
  23. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng.8(1), 425–454 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited