OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1705–1715

Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials

Susanta Kumar Das, Hamza Messaoudi, Abishek Debroy, Enda McGlynn, and Ruediger Grunwald  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1705-1715 (2013)
http://dx.doi.org/10.1364/OME.3.001705


View Full Text Article

Enhanced HTML    Acrobat PDF (1787 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report studies of multiphoton mechanisms of plasmon excitation and their influence on the femtosecond-laser induced sub-wavelength ripple generation in large-bandgap dielectric and semiconducting transparent materials. An extended Drude-Sipe formalism is applied to quantitatively estimate the real part of the dielectric function which is dependent on the carrier density. The theory is able to predict the ripple periods for selected materials in good agreement with the experimental observations. Possible limitations at very small spatial periods are also discussed.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Nanomaterials

History
Original Manuscript: June 6, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: August 18, 2013
Published: September 23, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Citation
Susanta Kumar Das, Hamza Messaoudi, Abishek Debroy, Enda McGlynn, and Ruediger Grunwald, "Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials," Opt. Mater. Express 3, 1705-1715 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  2. A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process.86(3), 321–324 (2007). [CrossRef]
  3. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008). [CrossRef] [PubMed]
  4. B. Kumar and R. K. Soni, “Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses,” J. Phys. D Appl. Phys.41(15), 155303 (2008). [CrossRef]
  5. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008). [CrossRef]
  6. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000). [CrossRef]
  7. H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997). [CrossRef]
  8. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999). [CrossRef]
  9. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]
  10. K. W. Kolasinski, “Solid structure formation during the liquid/solid phase transition,” Curr. Opin. Solid State Mater. Sci.11(5-6), 76–85 (2007). [CrossRef]
  11. C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser,” Opt. Lett.35(17), 2937–2939 (2010). [CrossRef] [PubMed]
  12. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009). [CrossRef] [PubMed]
  13. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express17(24), 21581–21589 (2009). [CrossRef] [PubMed]
  14. A. Y. Vorobyev and C. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008). [CrossRef]
  15. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010). [CrossRef] [PubMed]
  16. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009). [CrossRef] [PubMed]
  17. J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011). [CrossRef]
  18. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009). [CrossRef]
  19. R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010). [CrossRef]
  20. Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007). [PubMed]
  21. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006). [CrossRef] [PubMed]
  22. J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012). [CrossRef] [PubMed]
  23. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006). [CrossRef]
  24. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009). [CrossRef]
  25. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  26. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  27. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009). [CrossRef]
  28. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011). [CrossRef] [PubMed]
  29. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010). [CrossRef]
  30. S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).
  31. K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000). [CrossRef]
  32. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011). [CrossRef]
  33. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).
  34. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996). [CrossRef]
  35. C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005). [CrossRef]
  36. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express13(23), 9235–9247 (2005). [CrossRef] [PubMed]
  37. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009). [CrossRef]
  38. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004). [CrossRef]
  39. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007). [CrossRef]
  40. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005). [CrossRef]
  41. http://www.luxpop.com/
  42. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  43. R. Grunwald, S. K. Das, A. Debroy, E. McGlynn, and H. Messaoudi, “Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics,” in: IESC Proceedings Series (Institut d'Études Scientifiques de Cargèse, Corsica, France).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited