OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1733–1741

Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films

Bunyod Allabergenov, Seok-Hwan Chung, Soon Moon Jeong, Sungjin Kim, and Byeongdae Choi  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1733-1741 (2013)
http://dx.doi.org/10.1364/OME.3.001733


View Full Text Article

Enhanced HTML    Acrobat PDF (2168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

ZnO thin films with blue photoluminescence (PL) have been fabricated through Cu diffusion doping. A CuOx-ZnO mixture, and Cu/ZnO double layer, films were prepared on amorphous SiOx/Si substrates by pulsed laser deposition (PLD), and electron beam (e-beam) deposition, respectively. After sequential oxygen annealing, CuOx-ZnO mixture films exhibited green emission centered at 523 nm. However, Cu/ZnO double layer films differed in producing a blue emission centered at 480 nm. Detailed analysis identified that this blue shift in the emission center resulted from increased blue emissions attributed to Cu dopants in the film by e-beam deposition. Luminescence intensity was increased to 6 cd/m2 for a sample annealed at 700 °C. Color points were close to the locus of points following the line of a black-body-radiator on the CIE 1931 XY chromaticity diagram. The present results show that Cu-doped ZnO has strong potential as a cost effective phosphor for use in down converting LEDs.

© 2013 Optical Society of America

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(300.2140) Spectroscopy : Emission
(310.6860) Thin films : Thin films, optical properties
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: August 27, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 20, 2013
Published: September 24, 2013

Citation
Bunyod Allabergenov, Seok-Hwan Chung, Soon Moon Jeong, Sungjin Kim, and Byeongdae Choi, "Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films," Opt. Mater. Express 3, 1733-1741 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” J. Nat. Photonics Rev.7(1), 13–23 (2012). [CrossRef]
  2. V. Wood, M. J. Panzer, J. Chen, M. S. Bardley, J. E. Halpert, M. G. Bawendi, and V. Bulvoić, “Inkjet-Printed quantum dot-polymer composites for full-color AC-driven displays,” Adv. Mater.21(21), 2151–2155 (2009). [CrossRef]
  3. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009). [CrossRef] [PubMed]
  4. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Waller, “Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture,” Nano Lett.1(4), 207–211 (2001). [CrossRef]
  5. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance cross-linked colloidal quantum-dot light-emitting diodes,” Nat. Photonics3(6), 341–345 (2009). [CrossRef]
  6. D. Ratchford, K. Dziatkowski, T. Hartsfield, X. Li, Y. Gao, and Z. Tang, “Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface,” J. Appl. Phys.109(10), 103509 (2011). [CrossRef]
  7. D. Feezell, J. Speck, S. DenBaars, and Sh. Nakamura, “Semipolar (2021) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Display Technology9, 190–198 (2013). [CrossRef]
  8. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  9. H. Zhao, G. Liu, J. Zhang, R. Arif, and N. Tansu, “Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes,” J. Display Technology9(4), 212–225 (2013). [CrossRef]
  10. G. Liu, J. Zhang, Ch.-K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics Journal5(2), 2201011 (2013). [CrossRef]
  11. S. Choi, M.-H. Ji, J. Kim, H. J. Kim, and M. M. Satter, “Efficiency droop due to electron spill-over and limited hole injection in III-nitrid visible light-emitting diodes employing lattice-matched InAlN electron blocking layers,” Appl. Phys. Lett.101(16), 161110 (2012).
  12. S.-H. Yang, J.-S. Lin, F.-S. Juang, D.-C. Chou, M.-H. Chung, C.-M. Chen, and L.-C. Liu, “White light emitting diodes (LEDs) with good color rendering indices (CRI) and high luminous efficiencies by the encapsulation of mixed and double-deck phosphors,” Curr. Appl. Phys.13(5), 931–934 (2013). [CrossRef]
  13. R. Wang, J. Zhang, X. Xu, Y. Wang, L. Zhou, and B. Li, “White LED with high color rendering index based on Ca8Mg(SiO4)4Cl2:Eu2+ and ZnCdTe/CdSe quantum dot hybrid phosphor,” Mater. Lett.84, 24–26 (2012). [CrossRef]
  14. J.-H. Kim, T.-H. Shin, K.-J. Yang, J. Jeong, and B. Choi, “Abstraction of blue photoluminescence in Al-doped ZnO nanoparticles prepared by electron beam deposition,” Appl. Phys. Express5(1), 012603 (2012). [CrossRef]
  15. X. Peng, J. Xu, H. Zang, B. Wang, and Z. Wang, “Structural and PL properties of Cu-doped ZnO films,” J. Lumin.128(3), 297–300 (2008). [CrossRef]
  16. Y. Yan, M. M. Al-Jassim, and S. H. Wei, “Doping of ZnO by group-IB elements,” Appl. Phys. Lett.89(18), 181912 (2006). [CrossRef]
  17. L. Ma, S. Ma, H. Chen, X. Ai, and X. Huang, “Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering,” Appl. Surf. Sci.257(23), 10036–10041 (2011). [CrossRef]
  18. F. M. Li, L. T. Bo, S. Y. Ma, X. L. Huang, L. G. Ma, J. Liu, X. L. Zhang, F. C. Yang, and Q. Zhao, “Effects of the oxygen partial pressure and annealing atmospheres on the microstructures and optical properties of Cu-doped ZnO films,” Superlattices Microstruct.51(3), 332–342 (2012). [CrossRef]
  19. F. Yang, S. Ma, X. Zhang, M. Zhang, F. F. Li, J. Liu, and Q. Zhao, “Blue–green and red luminescence from ZnO/porous silicon and ZnO:Cu/porous silicon nanocomposite films,” Superlattices Microstruct.52(2), 210–220 (2012). [CrossRef]
  20. K. M. Safi, R. Vinodkumar, R. J. Bose, V. N. Uvais, and V. P. Mahadevan Pillai, “Effect of Cu on the microstructure and electrical properties of Cu/ZnO thin films,” J. Alloy. Comp.551, 243–248 (2013).
  21. Y. M. Tao, S. Y. Ma, H. X. Chen, J. X. Meng, L. L. Hou, Y. F. Jia, and X. R. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO:Cu films,” Vacuum85(7), 744–748 (2011). [CrossRef]
  22. J.-H. Jeon, S.-Y. Jeong, and Ch.-R. Cho, “Heteroepitaxial relation and optical properties of Cu-doped ZnO films grown by using pulsed laser deposition,” J. Korean Phys. Soc.54(92), 858–862 (2009). [CrossRef]
  23. J. B. Kim, D. Byun, S. Y. Ie, D. H. Park, W. K. Choi, J.-W. Choi, and B. Angadi, “Cu-doped ZnO-based p–n hetero-junction light emitting diode,” Semicond. Sci. Technol.23(9), 095004 (2008). [CrossRef]
  24. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005). [CrossRef]
  25. M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys.106(7), 071101 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited