OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1742–1754

Assembling an endcap to optical fibers by femtosecond laser welding and milling

David Hélie, Samuel Gouin, and Réal Vallée  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1742-1754 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method for assembling endcaps to optical fibers is presented. The method relies on femtosecond laser welding and milling of a glass slide to the polished end of the fiber. The fiber is welded to the glass slide in the cladding region so as to seal the core area without affecting its optical transparency. The same laser is used to mill through the glass slide thereby shaping a microscopic endcap with a diameter slightly larger than that of the fiber. The method was applied to both a standard and a microstructured optical fiber. Preliminary results are also presented on femtosecond laser welding parallel to an interface showing the potential of this approach for optical fiber fusion splicing.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(320.2250) Ultrafast optics : Femtosecond phenomena
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Laser Materials Processing

Original Manuscript: July 26, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 15, 2013
Published: September 26, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

David Hélie, Samuel Gouin, and Réal Vallée, "Assembling an endcap to optical fibers by femtosecond laser welding and milling," Opt. Mater. Express 3, 1742-1754 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  2. Y. Ariel, E. Sherman, A. Patlakh, and R. Bronstein, “Termination of end-faces of air-clad and photonic-crystal fibers,” U.S. patent 2003/0068150 (10 April, 2003).
  3. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, Heidelberg, 2005).
  4. S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012). [CrossRef]
  5. S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009). [CrossRef]
  6. S. Sinha, K. E. Urbanek, A. Krzywicki, and R. L. Byer, “Investigation of the suitability of silicate bonding for facet termination in active fiber devices,” Opt. Express15(20), 13003–13022 (2007). [CrossRef] [PubMed]
  7. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005). [CrossRef]
  8. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012). [CrossRef] [PubMed]
  9. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011). [CrossRef]
  10. J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006). [CrossRef]
  11. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  12. J. Haisma and G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. Rep.37(1-2), 1–60 (2002). [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  14. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep.441(2-4), 47–189 (2007). [CrossRef]
  15. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011). [CrossRef]
  16. D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012). [CrossRef]
  17. D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004). [CrossRef]
  18. X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys., A Mater. Sci. Process.104(2), 713–719 (2011). [CrossRef]
  19. R. B. Abernethy, The New Weibull Handbook (R.B. Abernethy, Florida, 2000).
  20. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt.50(13), 1941–1944 (2011). [CrossRef] [PubMed]
  21. S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE7920, 7920006 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited