OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1755–1768

Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica

R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, and M. Zamfirescu  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1755-1768 (2013)
http://dx.doi.org/10.1364/OME.3.001755


View Full Text Article

Enhanced HTML    Acrobat PDF (2385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast laser-induced refractive index changes in a-SiO2 consist, depending on the irradiation conditions, of either positive variations, voids, or regular nanoscale patterns, each of these underlying specific structural transformations. These allow for obtaining a large palette of optical functions ranging from low loss guiding to anisotropic scattering. While briefly reviewing the excitation mechanisms, we spectroscopically interrogate local electronic and structural transformations of the glass in the isotropic index zones and in the regular self-organized nanostructures, indicating bond breaking and matrix oxygen deficiency. A spatial defect segregation marks the material transformation in the different photoinscription regimes. We equally propose a method of real time control of nanogratings formation under the action of ultrashort laser pulse with variable envelopes. Application as polarizing optical devices is discussed.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(320.2250) Ultrafast optics : Femtosecond phenomena
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Materials Processing

History
Original Manuscript: June 25, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 7, 2013
Published: September 27, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Citation
R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, and M. Zamfirescu, "Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica," Opt. Mater. Express 3, 1755-1768 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  2. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006). [CrossRef]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Phot.2, 219–225 (2008). [CrossRef]
  4. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003). [CrossRef]
  5. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28, 2491–2493 (2003). [CrossRef] [PubMed]
  6. Y. Bellouard, A. A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13, 6635–6644 (2005). [CrossRef] [PubMed]
  7. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express14, 4826–4834 (2006). [CrossRef] [PubMed]
  8. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009). [CrossRef]
  9. L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010). [CrossRef]
  10. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005). [CrossRef]
  11. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004). [CrossRef]
  12. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007). [CrossRef]
  13. C. Mauclair, Spatio-Temporal Ultrafast Laser Tailoring for Bulk Functionalization of Transparent Materials, PhD thesis, Jean Monnet University Saint Etienne and Free University Berlin 2010.
  14. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009). [CrossRef]
  15. F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001). [CrossRef]
  16. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006). [CrossRef]
  17. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999). [CrossRef]
  18. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B24, 1627–1632 (2007). [CrossRef]
  19. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008). [CrossRef] [PubMed]
  20. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008). [CrossRef]
  21. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011). [CrossRef]
  22. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006). [CrossRef] [PubMed]
  23. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011). [CrossRef]
  24. P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Japan116, 1052–1062 (2008). [CrossRef]
  25. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008). [CrossRef]
  26. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009). [CrossRef] [PubMed]
  27. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010). [CrossRef] [PubMed]
  28. J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).
  29. C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011). [CrossRef]
  30. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).
  31. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to lowenergy femtosecond laser pulses,” Opt. Express16, 19520–19534 (2008). [CrossRef] [PubMed]
  32. K. Mishchik, Ultrafast laser-induced modification of optical glasses: a spectroscopy insight into the microscopic mechanisms, PhD thesis, Jean Monnet University Saint Etienne 2012.
  33. A. Mouskeftaras, Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials, PhD thesis, Ecole Polytechnique 2013.
  34. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011). [CrossRef] [PubMed]
  35. R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010). [CrossRef]
  36. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008). [CrossRef]
  37. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express15, 17855–17862 (2007). [CrossRef] [PubMed]
  38. C. Mauclair, M. Zamfirescu, G. Cheng, J.P. Colombier, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20, 12997–13005 (2012). [CrossRef] [PubMed]
  39. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000). [CrossRef]
  40. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009). [CrossRef] [PubMed]
  41. V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007). [CrossRef]
  42. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011). [CrossRef] [PubMed]
  43. G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett.38, 1924–1926 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (245 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited