OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1769–1776

Origin of the visible absorption in radiation-resistant optical fibers

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 10, pp. 1769-1776 (2013)
http://dx.doi.org/10.1364/OME.3.001769


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we investigated the point defects at the origin of the degradation of radiation-tolerant optical fibers used in the visible part of the spectrum for plasma diagnostics in radiation environments. For this aim, the effects of γ-ray irradiation up to the dose of 10 MGy(SiO2) and post-irradiation thermal annealing at 550°C were studied for a Fluorine-doped fiber. An absorption peaking around 2 eV is mainly responsible for the measured radiation-induced losses, its origin being currently debated in the literature. On the basis of the unchanging shape of this band with the radiation dose, its correlation with the 1.9 eV photoluminescent band and the thermal treatment results we assign the asymmetric absorption around 2 eV to an unique defect, the NBOHC, instead of a set of various defects.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(250.5230) Optoelectronics : Photoluminescence
(300.1030) Spectroscopy : Absorption
(350.5610) Other areas of optics : Radiation

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 11, 2013
Published: September 27, 2013

Citation
A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, "Origin of the visible absorption in radiation-resistant optical fibers," Opt. Mater. Express 3, 1769-1776 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-10-1769


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008). [CrossRef]
  2. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004). [CrossRef]
  3. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239, 16–48 (1998). [CrossRef]
  4. K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986). [CrossRef]
  5. K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987). [CrossRef]
  6. D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239, 66–77 (1998). [CrossRef]
  7. D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?,” J. Non-Cryst. Solids349, 139–147 (2004). [CrossRef]
  8. Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B68, 014204 (2003). [CrossRef]
  9. S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006). [CrossRef]
  10. B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003). [CrossRef]
  11. S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004). [CrossRef]
  12. L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).
  13. M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B69, 153201 (2004). [CrossRef]
  14. G. H. Sigel and M. J. Marrone, “Photoluminescence In As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers,” J. Non-Cryst. Solids45, 235–247 (1981). [CrossRef]
  15. M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006). [CrossRef]
  16. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008). [CrossRef]
  17. M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998). [CrossRef]
  18. L. Vaccaro and M. Cannas, “The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre,” J. Phys. Condens. Matter.22, 235801 (2010). [CrossRef]
  19. S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008). [CrossRef]
  20. M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009). [CrossRef]
  21. P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited