OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1777–1788

Modeling of InGaN p-n junction solar cells

Shih-Wei Feng, Chih-Ming Lai, Chin-Yi Tsai, Yu-Ru Su, and Li-Wei Tu  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1777-1788 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (958 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InGaN p-n junction solar cells with various indium composition and thickness of upper p-InGaN and lower n-InGaN junctions are investigated theoretically. The physical properties of InGaN p-n junction solar cells, such as the short circuit current density (JSC), open circuit voltage (Voc), fill factor (FF), and conversion efficiency (η), are theoretically calculated and simulated by varying the device structures, position of the depletion region, indium content, and photon penetration depth. The results indicate that an In0.6Ga0.4N solar cell, with optimal device parameters, can have a JSC ~31.8 mA/cm2, Voc ~0.874 volt, FF ~0.775, and η ~21.5%. It clearly demonstrates that medium-indium-content InGaN materials have the potential to realize high efficiency solar cells. Furthermore, the simulation results, with various thicknesses of the p-InGaN junction but a fixed thickness of the n-InGaN junction, shows that the performance of InGaN solar cells is determined by the upper p-InGaN junction rather than the n-InGaN substrate. This is attributed to the different amount of light absorption in the depletion region and the variation of the collection efficiency of minority carriers.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: July 29, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 21, 2013
Published: September 30, 2013

Shih-Wei Feng, Chih-Ming Lai, Chin-Yi Tsai, Yu-Ru Su, and Li-Wei Tu, "Modeling of InGaN p-n junction solar cells," Opt. Mater. Express 3, 1777-1788 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).
  2. A. Yamamoto, M. R. Islam, T.-T. Kang, and A. Hashimoto, “Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells,” Phys. Status Solidi C7(5), 1309–1316 (2010). [CrossRef]
  3. S. W. Feng, C. M. Lai, C. H. Chen, W. C. Sun, and L. W. Tu, “Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homo-junction solar cells,” J. Appl. Phys.108(9), 093118 (2010). [CrossRef]
  4. X. Zhang, X. L. Wang, H. L. Xiao, C. B. Yang, J. X. Ran, C. M. Wang, Q. F. Hou, and J. M. Li, “Simulation of In0.65Ga0.35N single-junction solar cell,” J. Phys. D Appl. Phys.40(23), 7335–7338 (2007).
  5. L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys.104(2), 024507 (2008). [CrossRef]
  6. X. Shen, S. Lin, F. Li, Y. Wei, S. Zhong, H. Wan, and J. Li, “Simulation of the InGaN-based tandem solar cells,” Proc. SPIE7045, 70450E, 70450E-8 (2008). [CrossRef]
  7. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007). [CrossRef]
  8. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98(13), 131115 (2011). [CrossRef]
  9. X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett.93(26), 261108 (2008). [CrossRef]
  10. X. M. Cai, S. W. Zeng, and B. P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95(17), 173504 (2009). [CrossRef]
  11. B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Design and realization of wide-band-gap (~2.67 eV) InGaN p-n junction solar cell,” IEEE Electron Device Lett.31(1), 32–34 (2010). [CrossRef]
  12. R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett.97(7), 073115 (2010). [CrossRef]
  13. M. J. Jeng, Y. L. Lee, and L. B. Chang, “Temperature dependences of InxGa1-xN multiple quantum well solar cells,” J. Phys. D Appl. Phys.42(10), 105101 (2009). [CrossRef]
  14. J. J. Wierer, A. J. Fischer, and D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices,” Appl. Phys. Lett.96(5), 051107 (2010). [CrossRef]
  15. J. Y. Chang and Y. K. Kuo, “Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells,” IEEE Electron Device Lett.32(7), 937–939 (2011). [CrossRef]
  16. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003), Chap. 6.
  17. F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, “Hole transport and carrier lifetime in InN epilayers,” Appl. Phys. Lett.87(21), 212104 (2005). [CrossRef]
  18. M. S. Shur and R. F. Davis, GaN-Based Materials and Device (World Scientific, 2004).
  19. F. Chena, A. N. Cartwright, H. Lu, and W. J. Schaff, “Temperature-dependent optical properties of wurtzite InN,” Physica E20(3–4), 308–312 (2004). [CrossRef]
  20. Z. Z. Bandić, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Electron diffusion length and lifetime in p-type GaN,” Appl. Phys. Lett.73(22), 3276–3278 (1998). [CrossRef]
  21. G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells94(3), 478–483 (2010). [CrossRef]
  22. D. Iida, K. Nagata, T. Makino, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, A. Bandoh, and T. Udagawa, “Growth of GaInN by raised-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Express3(7), 075601 (2010). [CrossRef]
  23. G. Durkaya, M. Alevli, M. Buegler, R. Atalay, S. Gamage, M. Kaiser, R. Kirste, A. Hoffmann, M. Jamil, I. Ferguson, and N. Dietz, “Growth temperature-phase stability relation in In1-xGaxN epilayers grown by high-pressure CVD,” Mater. Res. Soc. Symp. Proc. 1202, 1202–I5.21 (2010).
  24. Y. Zhao, Q. Yan, C. Y. Huang, S. C. Huang, P. S. Hu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett.100(20), 201108 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited