OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1803–1809

Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation

Nikifor Rakov, Whualkuer Lozano B., Edilson L. Falcão-filho, Renato B. Guimarães, Glauco S. Maciel, and Cid B. de Araújo  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1803-1809 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Frequency upconversion (UC) luminescence was investigated in terbium (Tb3+) doped lutetium silicate powders when the samples were irradiated with femtosecond lasers operating either at 800 nm or 1500 nm. The samples with three different Tb3+ concentrations were prepared by the combustion synthesis method. Rietveld analysis of the X-ray powder diffraction data showed the predominance of monoclinic Lu2SiO5 phase. UC luminescence signals induced by three- and four-photon absorption were identified. The mechanisms that originate the anti-Stokes luminescence were discussed.

© 2013 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: July 30, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 1, 2013
Published: October 4, 2013

Nikifor Rakov, Whualkuer Lozano B., Edilson L. Falcão-filho, Renato B. Guimarães, Glauco S. Maciel, and Cid B. de Araújo, "Three- and four-photon excited upconversion luminescence in terbium doped lutetium silicate powders by femtosecond laser irradiation," Opt. Mater. Express 3, 1803-1809 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003). [CrossRef]
  2. R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009). [CrossRef]
  3. I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001). [CrossRef]
  4. Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012). [CrossRef]
  5. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989). [CrossRef] [PubMed]
  6. N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).
  7. N. Rakov and G. S. Maciel, “Enhancement of luminescence efficiency of f-f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis,” Chem. Phys. Lett.400(4-6), 553–557 (2004). [CrossRef]
  8. L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008). [CrossRef]
  9. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  10. L. Y. Yang, Y. J. Dong, D. P. Chen, C. Wang, X. Hu, N. Da, G. J. Zhao, J. Xu, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Three-photon-excited upconversion luminescence of Ce3+ YAP crystal by femtosecond laser irradiation,” Opt. Express14(1), 243–247 (2006). [CrossRef] [PubMed]
  11. H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008). [CrossRef]
  12. D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006). [CrossRef]
  13. M. Yamaga, Y. Ohsumi, T. Nakayama, and T. P. J. Han, “Persistent phosphorescence in Ce-doped Lu2SiO5,” Opt. Mater. Express2(4), 413–419 (2012). [CrossRef]
  14. A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006). [CrossRef]
  15. H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010). [CrossRef]
  16. Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002). [CrossRef]
  17. Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007). [CrossRef]
  18. L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996). [CrossRef]
  19. R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008). [CrossRef]
  20. A. C. Larson, R. B. von Dreele, General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86–748, 2004.
  21. M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010). [CrossRef]
  22. H. Huang and B. Yan, “Luminescence of nanophoshors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors,” Mater. Sci. Eng. B117(3), 261–264 (2005). [CrossRef]
  23. C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005). [CrossRef]
  24. S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited