OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1820–1833

Opals infiltrated with a stimuli-responsive hydrogel for ethanol vapor sensing

Riccardo Pernice, Gabriele Adamo, Salvatore Stivala, Antonino Parisi, Alessandro C. Busacca, Dario Spigolon, Maria Antonietta Sabatino, Leonardo D’Acquisto, and Clelia Dispenza  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1820-1833 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1573 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a novel class of optical materials for ethanol vapor sensing, based on polystyrene opals infiltrated with an innovative stimuli-responsive hydrogel. We describe the fabrication process of the bare polystyrene opals and their subsequent infiltration. The optical characterization of the photonic crystal templates was performed to prove the good quality of the samples. Measurements on the infiltrated opals showed that the transmission spectra in the visible range strongly change at varying concentrations of ethanol vapor. The fabricated structures show a linear optical response in the visible range, for high values of ethanol concentration.

© 2013 OSA

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: June 10, 2013
Revised Manuscript: July 31, 2013
Manuscript Accepted: August 15, 2013
Published: October 8, 2013

Riccardo Pernice, Gabriele Adamo, Salvatore Stivala, Antonino Parisi, Alessandro C. Busacca, Dario Spigolon, Maria Antonietta Sabatino, Leonardo D’Acquisto, and Clelia Dispenza, "Opals infiltrated with a stimuli-responsive hydrogel for ethanol vapor sensing," Opt. Mater. Express 3, 1820-1833 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Baldini, J. Homola, S. Martellucci, and A. Chester, eds., Optical Chemical Sensors, NATO Science Series, vol. 224 (Springer, 2006).
  2. P. C. A. Jerónimo, A. N. Araújo, M. Conceição B S M Montenegro, and B. S. M. Montenegro, “Optical sensors and biosensors based on sol-gel films,” Talanta72(1), 13–27 (2007). [CrossRef] [PubMed]
  3. A. Lobnik, M. Turel, and Š. Korent Urek, “Optical chemical sensors: Design and applications,” in Advances in Chemical Sensors, W. Wang, ed. (In-Tech, 2012).
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2005), Chap 1.
  5. R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010). [CrossRef]
  6. J. Y. Wang, Y. Cao, Y. Feng, F. Yin, and J. P. Gao, “Multiresponsive inverse-opal hydrogels,” Adv. Mater.19(22), 3865–3871 (2007). [CrossRef]
  7. Z. Pan, J. Ma, J. Yan, M. Zhou, and J. Gao, “Response of inverse-opal hydrogels to alcohols,” J. Mater. Chem.22(5), 2018–2025 (2012). [CrossRef]
  8. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, “Inverse silica opal photonic crystals for optical sensing applications,” Opt. Express15(20), 12979–12988 (2007). [CrossRef] [PubMed]
  9. X. Xu, A. V. Goponenko, and S. A. Asher, “Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials,” J. Am. Chem. Soc.130(10), 3113–3119 (2008). [CrossRef] [PubMed]
  10. A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” Proc. SPIE6369, 63690B, 63690B–5 (2006). [CrossRef]
  11. J. Shin, P. V. Braun, and W. Lee, “Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal,” Sens. Actuators B Chem.150(1), 183–190 (2010). [CrossRef]
  12. L. Y. Yang and W. B. Liau, “Optical responses of polyaniline inverse opals to chemicals,” Synth. Met.160(17–18), 1809–1814 (2010). [CrossRef]
  13. L. Y. Yang and W. B. Liau, “Environmental responses of polyaniline inverse opals: Application to gas sensing,” Synth. Met.160(7–8), 609–614 (2010). [CrossRef]
  14. O. Okay, “General Properties of Hydrogels,” in Hydrogel Sensors and Actuators, G. Gerlach and K.-F. Arndt, eds. (Springer-Verlag, 2009).
  15. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature389(6653), 829–832 (1997). [CrossRef] [PubMed]
  16. J. Holtz, J. Weissman, G. Pan, and S. A. Asher, “Mesoscopically periodic photonic crystal materials for linear and nonlinear optics and chemical sensing,” Material Research Soc.23, 44–50 (1998).
  17. J. H. Holtz, J. S. W. Holtz, C. H. Munro, and S. A. Asher, “Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials,” Anal. Chem.70(4), 780–791 (1998). [CrossRef]
  18. M. M. Muscatello, L. E. Stunja, and S. A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations,” Anal. Chem.81(12), 4978–4986 (2009). [CrossRef] [PubMed]
  19. M. Ben-Moshe, V. L. Alexeev, and S. A. Asher, “Fast responsive crystalline colloidal array photonic crystal glucose sensors,” Anal. Chem.78(14), 5149–5157 (2006). [CrossRef] [PubMed]
  20. M. M. W. Muscatello and S. A. Asher, “Poly(vinyl alcohol) rehydratable photonic crystal sensor materials,” Adv. Funct. Mater.18(8), 1186–1193 (2008). [CrossRef]
  21. A. Yamauchi, “Gels: Introduction,” in Gels Handbook, Y. Osada, K. Kajiwara, eds. (Academic Press, San Diego, 2001).
  22. C. Alvarez-Lorenzo, H. Hiratani, J. L. Gómez-Amoza, R. Martínez-Pacheco, C. Souto, and A. Concheiro, “Soft contact lenses capable of sustained delivery of timolol,” J. Pharm. Sci.91(10), 2182–2192 (2002). [CrossRef] [PubMed]
  23. M.A. Sabatino, D. Spigolon, R. Pernice, G.Adamo, S. Stivala, A. Parisi, L. D’Acquisto, A.C. Busacca, C. Dispenza, University of Palermo, Viale delle Scienze, Palermo, are preparing a manuscript to be called “Periodically nanostructured hydrogels responsive to ethanol vapors.”
  24. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Y. A. Vlasov, “Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects,” Il Nuovo Cimento D.17(11–12), 1349–1354 (1995). [CrossRef]
  25. J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, Á. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011). [CrossRef] [PubMed]
  26. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999). [CrossRef]
  27. G. Adamo, D. Agrò, S. Stivala, A. Parisi, C. Giaconia, A. Busacca, M. C. Mazzillo, D. Sanfilippo, and P. G. Fallica, “Responsivity measurements of N-on-P and P-on-N silicon photomultipliers in the continuous wave regime,” Proc. SPIE8629, 86291A, 86291A–9 (2013). [CrossRef]
  28. E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B72(4), 045102 (2005). [CrossRef]
  29. M. Allard, E. H. Sargent, E. Kumacheva, and O. Kalinina, “Characterization of internal order of colloidal crystals by optical diffraction,” Opt. Quantum Electron.34(1/3), 27–36 (2002). [CrossRef]
  30. A. Pasquazi, S. Stivala, G. Assanto, V. Amendola, M. Meneghetti, M. Cucini, and D. Comoretto, “In situ tuning of a photonic band gap with laser pulses,” Appl. Phys. Lett.93(9), 091111 (2008). [CrossRef]
  31. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison,” IEEE J. Quantum Electron.46(3), 368–376 (2010). [CrossRef]
  32. V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, “Colloidal photonic crystals doped with gold nanoparticles: spectroscopy and optical switching properties,” Adv. Funct. Mater.17(15), 2779–2786 (2007). [CrossRef]
  33. S. Achelle, Á. Blanco, M. López-García, R. Sapienza, M. Ibisate, C. López, and J. Rodríguez-López, “New poly(phenylene-vinylene)-methyl methacrylate-based photonic crystals,” J. Polym. Sci. A Polym. Chem.48(12), 2659–2665 (2010). [CrossRef]
  34. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007). [CrossRef]
  35. S. M. Abrarov, T. W. Kim, and T. W. Kang, “Equations for filling factor estimation in opal matrix: Addendum to [Opt. Commun. 259, 383 (2006)],” Opt. Commun.264(1), 240–246 (2006). [CrossRef]
  36. D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation,” J. Chem. Phys.111(1), 345–354 (1999). [CrossRef]
  37. J. Vetelino and A. Reghu, Introduction to Sensors (CRC Press, 2010), Introduction.
  38. G. Eranna, R. Paris, and T. Doll, “Sensor response time evaluations of trace hydrogen gaseous species with platinum using Kelvin Probe,” in Proceedings of IEEE Sensors 2012 (Taipei, 2012), pp. 1–4.
  39. A. D’Amico and C. Di Natale, “A contribution on some basic definitions of sensors properties,” IEEE Sens. J.1(3), 183–190 (2001). [CrossRef]
  40. R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “A Fabry-Perot refractometer for chemical vapor sensing by solid-phase microextraction,” in Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (Istanbul, 2011), pp. 85–86. [CrossRef]
  41. R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, J. A. Barnes, H.-P. Loock, R. S. Brown, and Y.-A. Peter, “Gas sensing using polymer-functionalized deformable Fabry-Perot interferometers,” Sens. Actuators B Chem.182, 45–52 (2013). [CrossRef]
  42. A. Bearzotti, A. Macagnano, S. Pantalei, E. Zampetti, I. Venditti, I. Fratoddi, and M. V. Russo, “Alcohol vapor sensory properties of nanostructured conjugated polymers,” J. Phys. Condens. Matter20(47), 474207 (2008). [CrossRef]
  43. S. Li, D. Hu, J. Huang, and L. Cai, “Optical sensing nanostructures for porous silicon rugate filters,” Nanoscale Res. Lett.7(1), 79 (2012). [CrossRef] [PubMed]
  44. C. Chen, Y. Zhu, H. Bao, J. Shen, H. Jiang, L. Peng, X. Yang, C. Li, and G. Chen, “Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor,” Chem. Commun. (Camb.)47(19), 5530–5532 (2011). [CrossRef] [PubMed]
  45. D. Comoretto, V. Robbiano, G. Canazza, L. Boarino, G. Panzarasa, M. Laus, and K. Sparnacci, “Photoactive spherical colloids for opal photonic crystals,” Polym Compos., doi: (2013) [CrossRef]
  46. J. F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B70(3), 035108 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited