OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1862–1871

High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams

Mindaugas Mikutis, Tadas Kudrius, Gintas Šlekys, Domas Paipulas, and Saulius Juodkazis  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1862-1871 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Direct laser write of volume Bragg gratings with diffraction efficiency (absolute) ∼90% is demonstrated using Gauss-Bessel laser beams in fused silica glass. Axial multiplexing of ∼ 90 μm long segments of modified optical material was demonstrated and thick Bragg gratings of aspect ratio depth/period ≈234 were achieved with period d = 1.5 μm. Typical fabrication scanning speeds were up to 50 mm/s for gratings with cross sections up to five millimeters made within 1 h time. Potential applications of high efficiency Bragg gratings in a low nonlinearity medium such as silica are discussed.

© 2013 OSA

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(140.3390) Lasers and laser optics : Laser materials processing
(160.3130) Materials : Integrated optics materials
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Laser Materials Processing

Original Manuscript: May 16, 2013
Revised Manuscript: July 30, 2013
Manuscript Accepted: August 29, 2013
Published: October 10, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Mindaugas Mikutis, Tadas Kudrius, Gintas Šlekys, Domas Paipulas, and Saulius Juodkazis, "High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams," Opt. Mater. Express 3, 1862-1871 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999). [CrossRef]
  2. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett.25, 1693–1695 (2000). [CrossRef]
  3. T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000). [CrossRef]
  4. H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).
  5. J. Lumeau and L. B. Glebov, “Modeling of the induced refractive index kinetics in photo-thermo-refractive glass,” Opt. Mater. Express3, 95–104 (2013). [CrossRef]
  6. C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011). [CrossRef]
  7. K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003). [CrossRef]
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  9. M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011). [CrossRef]
  10. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  11. O. Brzobohatý, T. Cižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express16, 12688–12700 (2008). [CrossRef] [PubMed]
  12. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J.48, 2909–2947 (1969). [CrossRef]
  13. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng.45, 015802 (2006). [CrossRef]
  14. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003). [CrossRef]
  15. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005). [CrossRef]
  16. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011). [CrossRef]
  17. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006). [CrossRef]
  18. A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.
  19. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008). [CrossRef]
  20. D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010). [CrossRef]
  21. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2and SiO2glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011). [CrossRef]
  22. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999). [CrossRef]
  23. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000). [CrossRef]
  24. V. Smirnov, J. Lumeau, S. Mokhov, B. Y. Zeldovich, and L. B. Glebov, “Ultranarrow bandwidth moiré reflecting bragg gratings recorded in photo-thermo-refractive glass,” Opt. Lett.35, 592–594 (2010). [CrossRef] [PubMed]
  25. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011). [CrossRef]
  26. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012). [CrossRef]
  27. S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004). [CrossRef]
  28. C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol.21, S207–S215 (2003). [CrossRef]
  29. A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001). [CrossRef]
  30. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010). [CrossRef]
  31. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Las. Phot. Rev.6, 607–621 (2012). [CrossRef]
  32. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012). [CrossRef]
  33. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett.32, 2804–2806 (2007). [CrossRef] [PubMed]
  34. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited