OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1893–1905

Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers

Chun-Yu Yang, Chung-Lun Wu, Yung-Hsiang Lin, Ling-Hsuan Tsai, Yu-Chieh Chi, Jung-Hung Chang, Chih-I Wu, Hung-Kuei Tsai, Din-Ping Tsai, and Gong-Ru Lin  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1893-1905 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Without the need of single-layer graphene, the graphite nano-sheet powder electrochemically exfoliated from graphite foil can also be employed as a stable saturable absorber and mode-locker for fiber lasers. High-quality graphite nano-sheets containing few graphene layers can be obtained by slow electrochemical exfoliation without the need of post annealing procedure. With reducing the electrochemical exfoliation bias of the graphite foil based anode from + 6 and + 3 volts, the electrochemically exfoliated graphite nano-sheets reveals a decreased D-band intensity in Raman scattering spectrum, and the 2D-band intensity is concurrently enlarged by two times to support the improved quality with suppressed oxidation during the exfoliation reaction. The X-ray photoelectron spectroscopy also confirms the suppression of the C-O bonds in the graphite nano-sheets obtained with decreasing the exfoliation bias. After centrifugation, the average diameter of the exfoliated graphite nano-sheets extracted from the acetone solution is shrunk from 7 μm to 100 nm as the anode bias decreases from 6 to 3 volts. Both the quality and size distribution of the graphite nano-sheets are improved with such slow but refined electrochemical exfoliation. In application, the graphite nano-sheets obtained at different exfoliation bias show relatively stable saturable absorption and passive mode-locking performance in Erbium doped fiber lasers (EDFLs). Benefiting from the advantages of high-gain and strong pulse compression in the EDFL, the graphite nano-sheets with different modulation depths only behave as a mode-locking starter and show trivial influence to the pulse shortening in the mode-locked EDFL, indicating that the strong soliton compression mechanism dominates the generation of 430-450 fs pulsewidth in the EDFL passively mode-locked by graphite nano-sheets.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Nonlinear Optical Materials

Original Manuscript: June 17, 2013
Revised Manuscript: July 18, 2013
Manuscript Accepted: August 2, 2013
Published: October 15, 2013

Chun-Yu Yang, Chung-Lun Wu, Yung-Hsiang Lin, Ling-Hsuan Tsai, Yu-Chieh Chi, Jung-Hung Chang, Chih-I Wu, Hung-Kuei Tsai, Din-Ping Tsai, and Gong-Ru Lin, "Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers," Opt. Mater. Express 3, 1893-1905 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  3. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008). [CrossRef]
  4. F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009). [CrossRef] [PubMed]
  5. C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012). [CrossRef] [PubMed]
  6. G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013). [CrossRef]
  7. Y.-H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013). [CrossRef]
  8. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009). [CrossRef]
  9. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012). [CrossRef]
  10. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  11. H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009). [CrossRef]
  12. J.-L. Xu, X.-L. Li, Y.-Z. Wu, X. P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36(10), 1948–1950 (2011). [CrossRef] [PubMed]
  13. Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013). [CrossRef]
  14. X.-L. Li, J.-L. Xu, Y.-Z. Wu, J.-L. He, and X.-P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express19(10), 9950–9955 (2011). [CrossRef] [PubMed]
  15. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012). [CrossRef]
  16. K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012). [CrossRef]
  17. K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013). [CrossRef]
  18. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011). [CrossRef]
  19. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  20. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012). [CrossRef] [PubMed]
  21. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011). [CrossRef]
  22. Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010). [CrossRef] [PubMed]
  23. T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012). [CrossRef] [PubMed]
  24. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008). [CrossRef] [PubMed]
  25. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  26. A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013). [CrossRef] [PubMed]
  27. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009). [CrossRef] [PubMed]
  28. C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011). [CrossRef] [PubMed]
  29. J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011). [CrossRef] [PubMed]
  30. H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008). [CrossRef]
  31. L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010). [CrossRef] [PubMed]
  32. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010). [CrossRef] [PubMed]
  33. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011). [CrossRef]
  34. Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012). [CrossRef]
  35. K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009). [CrossRef] [PubMed]
  36. J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009). [CrossRef] [PubMed]
  37. G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999). [CrossRef]
  38. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett.33(19), 2221–2223 (2008). [CrossRef] [PubMed]
  39. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  40. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007). [CrossRef] [PubMed]
  41. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006). [CrossRef] [PubMed]
  42. Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011). [CrossRef]
  43. A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010). [CrossRef]
  44. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008). [CrossRef] [PubMed]
  45. H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012). [CrossRef]
  46. H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  47. G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007). [CrossRef]
  48. Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited