OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1925–1930

Layer separation driven by laser-induced strain in semiconductor thin film

Stefano Buratin and Paolo Villoresi  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1925-1930 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scribing of the semiconductor layer in thin-film solar cells is here achieved by means of laser induced thermal gradient and mechanical strain. We experimentally demonstrate the scribing by separating one layer from a underlying layer without a substantial melting phase. The modeling of the process was used to predict the spatio-temporal distribution of the induced effects, the resulting scribed channel is confined and the process has a good repeatability. We envisage a parallelization of the process for simultaneous cell formation on the panel.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(140.3390) Lasers and laser optics : Laser materials processing
(240.0310) Optics at surfaces : Thin films
(350.6050) Other areas of optics : Solar energy

ToC Category:
Laser Materials Processing

Original Manuscript: August 26, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 2, 2013
Published: October 22, 2013

Stefano Buratin and Paolo Villoresi, "Layer separation driven by laser-induced strain in semiconductor thin film," Opt. Mater. Express 3, 1925-1930 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18, A73–A78 (2010). [CrossRef] [PubMed]
  2. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008). [CrossRef]
  3. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004). [CrossRef]
  4. S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005). [CrossRef]
  5. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011). [CrossRef]
  6. P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008). [CrossRef]
  7. P.-O. Westin, S. Schmidtb, and M. E. M. Huskeb, “Influence of spacial and temporal laser beam characteristics on thin-film ablation,” 24th European Photovoltaic Solar Energy Conference, 2009, Germany.
  8. P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011). [CrossRef]
  9. A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000). [CrossRef]
  10. J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010). [CrossRef]
  11. D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005). [CrossRef]
  12. J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006). [CrossRef]
  13. F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy77, 685–695 (2004).Thin Film PV. [CrossRef]
  14. A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012). [CrossRef]
  15. Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012). [CrossRef]
  16. P. Villoresi and S. Buratin, “Laser scribing process, PCT/EP2011/064287,” (2011).
  17. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003), chap. 13. [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  19. F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 1996), 4th ed.
  20. A. Bejan, Heat Transfer (Wiley, 1993).
  21. Ramon and Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation,” Comput.Methods in Appl.Mech.Eng.156, 185–210 (1998). [CrossRef]
  22. L. D. Landau and E. M. Lifsits, Theory of Elasticity (Pergamon Press, 1986).
  23. W. S. Slaughter, The Linearized Theory of Elasticity (Birkhauser, 2002). [CrossRef]
  24. M. A. Slawinski, Waves and Rays in Elastic Continua (World Scientific Publishing Co. Pte. Ltd., 2010), 2nd ed. [CrossRef]
  25. D. R. Lide and C. R. Company, CRC Handbook of Chemistry and Physics (CRC Press, 1998).
  26. A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, 1990), 5th ed.
  27. T. J. McMahon and G. J. Jorgensen, “Adhesion and thin-film module reliability,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on2, 2062–2065 (7–12 May 2006).
  28. Landolt-Börnstein, Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology (Springer, 2000), vol. 41E, chap. Copper indium selenide (CuInSe2) thermal expansion, Debye temperature, melting point and other lattice parameters.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited