OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1931–1943

Broadband fluorescence emission of Eu3+ doped germanotellurite glasses for fiber-based irradiation light sources

F. Wang, L. F. Shen, B. J. Chen, E. Y. B. Pun, and H. Lin  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1931-1943 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Eu3+ doped fiber-based germanotellurite (NZPGT) glasses with medium-low maximum phonon energy of 782 cm−1 have been fabricated and characterized. Judd-Ofelt intensity parameters Ω2 (6.25 × 10−20 cm2) and Ω4 (1.77 × 10−20 cm2) indicate a high asymmetrical and covalent environment around Eu3+ in the optical glasses. The spontaneous emission probability of the dominant transition 5D07F2 peaking at 612.5 nm and the corresponding maximum stimulated emission cross-section were derived to be 445.7 s−1 and 2.05 × 10−21 cm2, respectively, confirming the effectiveness of the red fluorescence emission. The quantum yield was derived to be 12% under 391 nm LED excitation, and approximately 88% photons have been demonstrated in wavelength range of 600−720 nm, indicating that Eu3+ doped NZPGT glasses under proper excitation conditions are promising optical materials for fiber-based irradiation light sources that are competent to activate diverse photodynamic therapy photosensitizers.

© 2013 Optical Society of America

OCIS Codes
(160.2290) Materials : Fiber materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Rare-Earth-Doped Materials

Original Manuscript: August 30, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 15, 2013
Published: October 23, 2013

F. Wang, L. F. Shen, B. J. Chen, E. Y. B. Pun, and H. Lin, "Broadband fluorescence emission of Eu3+ doped germanotellurite glasses for fiber-based irradiation light sources," Opt. Mater. Express 3, 1931-1943 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Amato, “Cancer therapy. Hope for a magic bullet that moves at the speed of light,” Science262(5130), 32–33 (1993). [CrossRef] [PubMed]
  2. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003). [CrossRef] [PubMed]
  3. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006). [CrossRef] [PubMed]
  4. Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993). [CrossRef]
  5. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996). [CrossRef] [PubMed]
  6. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010). [CrossRef] [PubMed]
  7. S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011). [CrossRef]
  8. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002). [CrossRef] [PubMed]
  9. T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagn. Photodyn.1(1), 43–48 (2004). [CrossRef]
  10. R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005). [PubMed]
  11. P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006). [PubMed]
  12. B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012). [CrossRef] [PubMed]
  13. J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin, “Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery,” Opt. Express21(1), 1030–1040 (2013). [CrossRef] [PubMed]
  14. I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001). [CrossRef]
  15. A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).
  16. E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010). [CrossRef]
  17. C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013). [CrossRef]
  18. V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express18(24), 25321–25328 (2010). [CrossRef] [PubMed]
  19. E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers (McGraw-Hill, 2004), Chap. 10.
  20. L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002). [CrossRef]
  21. J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009). [CrossRef]
  22. N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012). [CrossRef]
  23. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010). [CrossRef] [PubMed]
  24. X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012). [CrossRef]
  25. G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011). [CrossRef]
  26. K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007). [CrossRef]
  27. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968). [CrossRef]
  28. I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001). [CrossRef]
  29. A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010). [CrossRef]
  30. G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013). [CrossRef]
  31. M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995). [CrossRef]
  32. C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009). [CrossRef]
  33. Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010). [CrossRef]
  34. V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010). [CrossRef]
  35. R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007). [CrossRef]
  36. A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011). [CrossRef]
  37. M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013). [CrossRef]
  38. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968). [CrossRef]
  39. M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010). [CrossRef]
  40. Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater.31(1), 87–93 (2008). [CrossRef]
  41. D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008). [CrossRef]
  42. T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013). [CrossRef]
  43. K. Linganna and C. K. Jayasankar, “Optical properties of Eu3+ ions in phosphate glasses,” Spectrochim. Acta [A]97, 788–797 (2012). [CrossRef]
  44. A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006). [CrossRef]
  45. K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004). [CrossRef] [PubMed]
  46. V. R. Kumar and N. Veeraiah, “Optical absorption and photoluminescence properties of Eu3+-doped ZnF2−PbO−TeO2 glasses,” J. Mater. Sci.33(10), 2659–2662 (1998). [CrossRef]
  47. C. A. Morton, “Methyl aminolevulinate (Metvix) photodynamic therapy - practical pearls,” J. Dermatolog. Treat.14(Suppl 3), 23–26 (2003). [PubMed]
  48. M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited