OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1960–1973

Study of planar defect filtering in InP grown on Si by epitaxial lateral overgrowth

Carl Junesand, Himanshu Kataria, Wondwosen Metaferia, Nick Julian, Zhechao Wang, Yan-Ting Sun, John Bowers, Galia Pozina, Lars Hultman, and Sebastian Lourdudoss  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1960-1973 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7740 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InP thin films have been grown on InP/Si substrate by epitaxial lateral overgrowth (ELOG). The nature, origin and filtering of extended defects in ELOG layers grown from single and double openings in SiO2 mask have been investigated. Whereas ELOG layers grown from double openings occasionally exhibit threading dislocations (TDs) at certain points of coalescence, TDs are completely absent in ELOG from single openings. Furthermore, stacking faults (SFs) observed in ELOG layers grown from both opening types originate not from coalescence, but possibly from formation during early stages of ELOG or simply propagate from the seed layer through the mask openings. A model describing their propagation is devised and applied to the existent conditions, showing that SFs can effectively be filtered under certain conditions. ELOG layers grown from identical patterns on InP substrate contained no defects, indicating that the defect-forming mechanism is in any case not inherent to ELOG itself.

© 2013 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(130.5990) Integrated optics : Semiconductors
(160.4670) Materials : Optical materials
(250.1500) Optoelectronics : Cathodoluminescence
(310.1860) Thin films : Deposition and fabrication

ToC Category:

Original Manuscript: September 12, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 13, 2013
Published: October 25, 2013

Carl Junesand, Himanshu Kataria, Wondwosen Metaferia, Nick Julian, Zhechao Wang, Yan-Ting Sun, John Bowers, Galia Pozina, Lars Hultman, and Sebastian Lourdudoss, "Study of planar defect filtering in InP grown on Si by epitaxial lateral overgrowth," Opt. Mater. Express 3, 1960-1973 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008). [CrossRef]
  2. R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012). [CrossRef]
  3. Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011). [CrossRef] [PubMed]
  4. M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012). [CrossRef]
  5. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011). [CrossRef]
  6. J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010). [CrossRef]
  7. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012). [CrossRef]
  8. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012). [CrossRef] [PubMed]
  9. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992). [CrossRef]
  10. S. Mahajan, “Defects in semiconductors and their effects,” Acta Mater.48(1), 137–149 (2000). [CrossRef]
  11. A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992). [CrossRef]
  12. Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997). [CrossRef]
  13. T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006). [CrossRef]
  14. C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012). [CrossRef]
  15. D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987). [CrossRef]
  16. F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys.64(9), 4526–4530 (1988). [CrossRef]
  17. Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996). [CrossRef]
  18. J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002). [CrossRef]
  19. F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008). [CrossRef]
  20. A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985). [CrossRef]
  21. I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett.58(1), 48 (1991). [CrossRef]
  22. H. Suzuki, “Chemical interaction of solute atoms with dislocations,” Sci. Rep. Res. Inst. Tohoku Univ. [Med]A4, 455–463 (1952).
  23. D. B. Holt, “Transmission electron microscope observations on gap electroluminescent diode materials,” J. Mater. Sci.7(3), 265–278 (1972). [CrossRef]
  24. M. S. Abrahams, “Mechanism of thermal annihilation of stacking faults in Gaas,” J. Appl. Phys.41(6), 2358 (1970). [CrossRef]
  25. C. Junesand, M.-H. Gau, Y.-T. Sun, S. Loududoss, I. Lo, J. Jimenez, P. A. Postigo, F. M. M. Sánchez, J. Hernandez, S. Molina, A. Abdessamad, G. Pozina, L. Hultman, and P. Pirouz, “Defect reduction in heteroepitaxial InP on Si by epitaxial lateral overgrowth,” Manuscript, submitted to Materials Express (2013).
  26. R. S. Barnes, “The climb of edge dislocations in face-centred cubic crystals,” Acta Metall.2(3), 380–385 (1954). [CrossRef]
  27. A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011). [CrossRef]
  28. Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012). [CrossRef]
  29. L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995). [CrossRef]
  30. T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy81(3-4), 279–288 (2000). [CrossRef] [PubMed]
  31. K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys.29(Part 2, No. 4), L540–L543 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited