OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1974–1985

Cu2O/MgO band alignment and Cu2O-Au nanocomposites with enhanced optical absorption

Xuemin Wang, Dawei Yan, Changle Shen, Yuying Wang, Weidong Wu, Weihua Li, Zhongqian Jiang, Hongwen Lei, Minjie Zhou, and Yongjian Tang  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1974-1985 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2736 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single crystalline Cu2O film has been successfully synthesized on MgO(100) surface through laser molecular beam epitaxy. In situ reflection high-energy electron diffraction was employed to study the epitaxial growth of Cu2O. The composition and structure of the Cu2O were studied in detail by in situ X-ray photoelectron spectroscopy and transmission electron microscopy. Valence band structures of Cu2O/MgO heterojunction were investigated by in situ X-ray photoelectron spectroscopy and in situ ultraviolet photoemission spectroscopy. The valence band offset was found to be 0.54 eV. By alternative deposition, Cu2O-Au nanocomposites were prepared, which were characterized by in situ reflection high-energy electron diffraction, in situ X-ray photoelectron spectroscopy and transmission electron microscopy. Interestingly, below some critical content of Au, the epitaxial growth of Cu2O recovered after the deposition of Au. Due to the surface plasmon resonance of formed Au colloids, enhanced optical absorption at the wavelength from 600 nm to 800 nm was observed, which is in well agreement with the Mie theory. Depending on the pulses of Au, the position and the width of the absorption peaks can be easily changed.

© 2013 Optical Society of America

OCIS Codes
(160.1890) Materials : Detector materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:

Original Manuscript: September 30, 2013
Revised Manuscript: October 20, 2013
Manuscript Accepted: October 21, 2013
Published: October 29, 2013

Xuemin Wang, Dawei Yan, Changle Shen, Yuying Wang, Weidong Wu, Weihua Li, Zhongqian Jiang, Hongwen Lei, Minjie Zhou, and Yongjian Tang, "Cu2O/MgO band alignment and Cu2O-Au nanocomposites with enhanced optical absorption," Opt. Mater. Express 3, 1974-1985 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011). [CrossRef]
  2. S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009). [CrossRef]
  3. W. T.  Kung, Y. H.  Pai, Y. K.  Hsu, C. H.  Lin, C. M.  Wang, “Surface Plasmon assisted CuxO photocatalyst for pure water splitting,” Opt. Express 21(S2), A221–A228 (2013). [CrossRef] [PubMed]
  4. P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000). [CrossRef] [PubMed]
  5. A. E.  Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron. 29(1), 7–17 (1986). [CrossRef]
  6. A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011). [CrossRef] [PubMed]
  7. C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011). [CrossRef]
  8. L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010). [CrossRef]
  9. T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).
  10. N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).
  11. L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982). [CrossRef]
  12. R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013). [CrossRef]
  13. E.  Hutter, J.  Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]
  14. W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  15. S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  16. S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  17. J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).
  18. L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007). [CrossRef]
  19. X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).
  20. J.  Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999). [CrossRef]
  21. E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  22. P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010). [CrossRef]
  23. A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009). [CrossRef] [PubMed]
  24. M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012). [CrossRef] [PubMed]
  25. M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012). [CrossRef]
  26. S.  Link, M. A.  El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000). [CrossRef]
  27. F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011). [CrossRef]
  28. A.  Kirfel, K. D.  Eichhorn, “Accurate structure analysis with synchrotron radiation, the electron density in Al2O3 and Cu2O,” Acta Crystallogr. A 46(4), 271–284 (1990). [CrossRef]
  29. S. R.  Barman, D. D.  Sarma, “Investigation of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO,” J. Phys. Condens. Matter 4(37), 7607–7616 (1992). [CrossRef]
  30. S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996). [CrossRef]
  31. J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).
  32. S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983). [CrossRef]
  33. S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004). [CrossRef]
  34. K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009). [CrossRef]
  35. I.  Masaya, S.  Ying, “Band Alignment at the Cu2O/ZnO Heterojunction,” Jpn. J. Appl. Phys. 50(6), 051002 (2011).
  36. E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980). [CrossRef]
  37. A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006). [CrossRef]
  38. Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008). [CrossRef]
  39. X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011). [CrossRef]
  40. J. F.  Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85(3), 1249–1272 (1999). [CrossRef]
  41. M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990). [CrossRef]
  42. M.  Kuhn, T. K.  Sham, “Charge redistribution and electronic behavior in a series of Au-Cu alloys,” Phys. Rev. B Condens. Matter 49(3), 1647–1661 (1994). [CrossRef] [PubMed]
  43. K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  44. B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013). [CrossRef]
  45. L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited