OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1986–1991

Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1986-1991 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of saturable absorber (SA) based on gold nanorods (GNRs) for all-fiber passively Q-switched erbium-doped fiber laser (EDFL) is realized experimentally. The longitudinal surface plasmon resonance (SPR) absorption of GNRs is used to induce Q-switching. By inserting the GNRs SA in an EDFL cavity pumped by a 980 nm laser diode, stable passive Q-switching is achieved with a threshold pump power of ~27 mW, and 4.8 μs pulses at 1560 nm with a repetition rate of 39.9 kHz are obtained for a pump power of ~275 mW.

© 2013 Optical Society of America

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.4330) Materials : Nonlinear optical materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Nonlinear Optical Materials

Original Manuscript: August 20, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 18, 2013
Published: October 30, 2013

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin, "Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser," Opt. Mater. Express 3, 1986-1991 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett.24(6), 388–390 (1999). [CrossRef] [PubMed]
  2. C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium- and samarium-doped laser,” Opt. Lett.37(4), 629–631 (2012). [CrossRef] [PubMed]
  3. V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett.26(6), 343–345 (2001). [CrossRef] [PubMed]
  4. J. Y. Huang, S. C. Huang, H. L. Chang, K. W. Su, Y. F. Chen, and K. F. Huang, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express16(5), 3002–3007 (2008). [CrossRef] [PubMed]
  5. D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010). [CrossRef]
  6. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012). [CrossRef]
  7. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011). [CrossRef]
  8. Z. L. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett.35(21), 3709–3711 (2010). [CrossRef] [PubMed]
  9. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  10. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  11. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012). [CrossRef]
  12. T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012). [CrossRef]
  13. O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012). [CrossRef]
  14. M. S. Dhoni and W. Ji, “Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures,” J. Phys. Chem. C115(42), 20359–20366 (2011). [CrossRef]
  15. J. T. Lin, “Nonlinear optical theory and figure of merit of surface Plasmon resonance of gold nanorods,” J. Nanophoton.5(1), 051506 (2011). [CrossRef]
  16. J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010). [CrossRef]
  17. J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008). [CrossRef]
  18. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006). [CrossRef]
  19. Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011). [CrossRef] [PubMed]
  20. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011). [CrossRef] [PubMed]
  21. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshells,” J. Opt. Soc. Am. B16(10), 1814–1823 (1999). [CrossRef]
  22. K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers,” Opt. Lett.37(9), 1490–1492 (2012). [CrossRef] [PubMed]
  23. K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Express20(15), 16174–16179 (2012). [CrossRef]
  24. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997). [CrossRef]
  25. X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012). [CrossRef] [PubMed]
  26. H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013). [CrossRef] [PubMed]
  27. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013). [CrossRef]
  28. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003). [CrossRef]
  29. J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett.36(20), 4008–4010 (2011). [CrossRef] [PubMed]
  30. X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited