OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2003–2011

Surface plasmon enhanced photoluminescence in gold capped InGaAs quantum well nanodisk array

Jian Huang, Kar Hoo Patrick Tung, Liyuan Deng, Ning Xiang, Jianrong Dong, Aaron J. Danner, and Jinghua Teng  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 12, pp. 2003-2011 (2013)
http://dx.doi.org/10.1364/OME.3.002003


View Full Text Article

Enhanced HTML    Acrobat PDF (3372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a convenient method of tuning the surface plasmon resonance (SPR) wavelength to enhance photoluminescence (PL) in an InGaAs quantum well nanodisk (QWND) array covered with gold caps. The spectral response of the structure in the absorption was controlled by coupling the SPR to the quantum energy level of the underlying QWNDs through adjusting the size of the disks. A 4.5-fold enhancement in PL intensity was obtained when the SPR wavelength was tuned close to the light emission wavelength of the QWNDs. FDTD simulation consolidates the explanation of the measured spectral results and PL enhancement.

© 2013 Optical Society of America

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: September 6, 2013
Revised Manuscript: October 22, 2013
Manuscript Accepted: October 22, 2013
Published: November 1, 2013

Citation
Jian Huang, Kar Hoo Patrick Tung, Liyuan Deng, Ning Xiang, Jianrong Dong, Aaron J. Danner, and Jinghua Teng, "Surface plasmon enhanced photoluminescence in gold capped InGaAs quantum well nanodisk array," Opt. Mater. Express 3, 2003-2011 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-12-2003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010). [CrossRef] [PubMed]
  3. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011). [CrossRef]
  4. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  5. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004). [CrossRef]
  6. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008). [CrossRef]
  7. M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett.10(11), 4555–4558 (2010). [CrossRef] [PubMed]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  9. A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “Coupling of single InGaAs quantum dots to the plasmon resonance of a metal nanocrystal,” Appl. Phys. Lett.97(4), 043105 (2010). [CrossRef]
  10. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007). [CrossRef] [PubMed]
  11. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater.19(13), 2045–2052 (2009). [CrossRef]
  12. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010). [CrossRef] [PubMed]
  13. S. H. Kim, C. M. Lee, S. B. Sim, J. H. Kim, J. H. Choi, W. S. Han, K. J. Ahn, and K. J. Yee, “Enhanced in and out-coupling of InGaAs slab waveguides by periodic metal slit arrays,” Opt. Express20(6), 6365–6374 (2012). [CrossRef] [PubMed]
  14. H. Gao, K. H. P. Tung, J. Teng, S. J. Chua, and N. Xiang, “Coupling of surface plasmon with InGaAs/GaAs quantum well emission by gold nanodisk arrays,” Appl. Opt.52(16), 3698–3702 (2013). [CrossRef] [PubMed]
  15. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009). [CrossRef]
  16. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X.1(2), 021019 (2011). [CrossRef]
  17. S. D. Mukherjee and D. W. Woodard, “Etching and surface preparation of GaAs for device fabrication” in Gallium Arsenide: Materials, Devices, and Circuits, M. J. Howes, D. V. Morgan, eds (John Wiley & Sons, 1985), pp. 119–160.
  18. S. W. Pang, “Effects of dry etching on GaAs,” J. Vac. Sci. Technol. B1(4), 1334–1337 (1983).
  19. S. W. Pang, “Dry etching induced damage on vertical sidewalls of GaAs channels,” J. Vac. Sci. Technol. B6(6), 1916–1920 (1988).
  20. E. D. Palik, “Semiconductors: gallium arsenide (GaAs)” in Handbook of Optical Constants of Solids, E.D.Palik, eds. (Academic Press, 1985), pp. 429–443.
  21. J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch, Optical Properties of Metals (Fachinformation-szentrum Energie, 1981), Vol. I and II.
  22. www.lumerical.com
  23. R. Steffen, T. Koch, J. Oshinowo, F. Faller, and A. Forchel, “Photoluminescence study of deep etched InGaAs/GaAs quantum wires and dots defined by low-voltage electron beam lithography,” Appl. Phys. Lett.68(2), 223–225 (1996). [CrossRef]
  24. X. Qian, J. Li, D. Wasserman, and W. D. Goodhue, “Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography,” Appl. Phys. Lett.93(23), 231907 (2008). [CrossRef]
  25. J. Lin, A. Mohammadizia, A. Neogi, H. Morkoc, and M. Ohtsu, “Surface plasmon enhanced UV emission in AlGaN/GaN quantum well,” Appl. Phys. Lett.97(22), 221104 (2010). [CrossRef]
  26. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009). [CrossRef] [PubMed]
  27. J. Bellessa, C. Symonds, C. Meynaud, J. Plenet, E. Cambril, A. Miard, L. Ferlazzo, and A. Lemaître, “Exciton/plasmon polaritons in GaAs/Al0.93Ga0.07As heterostructures near a metallic layer,” Phys. Rev. B78(20), 205326 (2008). [CrossRef]
  28. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett.91(21), 211104 (2007). [CrossRef]
  29. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  30. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett.75(13), 1908–1910 (1999). [CrossRef]
  31. B. G. Jean-Michel Gerard, “Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol.17(11), 2089–2095 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited