OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2028–2036

Highly ordered mesoporous silica microfibres produced by evaporative self-assembly and fracturing

John Canning, Miles Ma, Brant C. Gibson, Jeffrey Shi, Kevin Cook, and Maxwell J. Crossley  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 12, pp. 2028-2036 (2013)
http://dx.doi.org/10.1364/OME.3.002028


View Full Text Article

Enhanced HTML    Acrobat PDF (1979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atomic force microscopy (AFM) of microfibres fabricated from the self-assembly and fracturing of silica nanoparticles reveals mesoporous structure with hcp packing. Pore size distribution for (20 – 30) nm sized particles are calculated to lie within rtet ~(2.2 – 3.3) nm and roct ~(4.2 – 6.2) nm for the octahedral and tetrahedral sites. The experimentally measured distribution, using N2 adsorption, is r ~(2 - 6) nm, in excellent agreement suggesting a highly controllable and periodic porosity using these structures. The potential for a number of material and device applications is discussed.

© 2013 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(240.6700) Optics at surfaces : Surfaces
(130.2755) Integrated optics : Glass waveguides
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: August 2, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: October 11, 2013
Published: November 5, 2013

Citation
John Canning, Miles Ma, Brant C. Gibson, Jeffrey Shi, Kevin Cook, and Maxwell J. Crossley, "Highly ordered mesoporous silica microfibres produced by evaporative self-assembly and fracturing," Opt. Mater. Express 3, 2028-2036 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-12-2028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat Commun3, 1188 (2012). [CrossRef] [PubMed]
  2. J. Canning, H. Weil, M. Naqshbandi, K. Cook, and M. Lancry, “Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires,” Opt. Mater. Express3(2), 284–294 (2013). [CrossRef]
  3. Q. Huo, D. Zhao, J. Fang, K. Weston, S. K. Buratto, G. D. Stucky, S. Schacht, and F. Schuth, “Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide,” Adv. Mater.9(121), 974–978 (1997). [CrossRef]
  4. K. Matsuzaki, D. Arai, N. Taneda, T. Mukaaiyama, and M. Ikemura, “Continuous silica glass fiber produced by sol-gel process,” J. Non-Cryst. Sol.112(1–3), 437–441 (1989).
  5. W. Haller, “Chromatography on Glass of Controlled Pore Size,” Nature206(4985), 693–696 (1965). [CrossRef]
  6. R. Schnabel and P. Langar, “Controlled-pore glass as a stationary phase in chromatography,” J. Chromatogr. A544, 137–146 (1991). [CrossRef]
  7. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature359(6397), 710–712 (1992). [CrossRef]
  8. K. Moller and T. Bein, “Inclusion chemistry in periodic mesoporous hosts,” Chem. Mater.10(10), 2950–2963 (1998). [CrossRef]
  9. G. E. Fryxell, Y. Lin, S. Fiskum, J. C. Birnbaum, H. Wu, K. Kemner, and S. Kelly, “Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports,” Environ. Sci. Technol.39(5), 1324–1331 (2005). [CrossRef] [PubMed]
  10. Q. Huo, D. I. Margolese, and G. D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials,” Chem. Mater.8(5), 1147–1160 (1996). [CrossRef]
  11. K. E. Shopsowitz, H. Qi, W. Y. Hamad, and M. J. Maclachlan, “Free-standing mesoporous silica films with tunable chiral nematic structures,” Nature468(7322), 422–425 (2010). [CrossRef] [PubMed]
  12. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, “Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating,” Nature389(6649), 364–368 (1997). [CrossRef]
  13. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structure,” Adv. Mater.10(16), 1380–1385 (1998). [CrossRef]
  14. G. Herzog, E. Sibottier, M. Etienne, and A. Walcarius, “Electrochemically assisted self-assembly of ordered and functionalized mesoporous silica films: impact of the electrode geometry and size on film formation and properties,” Faraday Discuss. (2013), doi:. [CrossRef]
  15. M. Lancry, B. Poumellec, J. Canning, K. Cook, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser and Photon. Rev, 1-10, (2013) doi . [CrossRef]
  16. J. Canning, M. Lancry, K. Cook, and B. Poumellec, “Zeosil formation by femtosecond laser irradiation,” Bragg Gratings, Photosensitivity & Poling in Glass Waveguides (BGPP), OSA’s Advanced Photonics Congress, Colorado United States, (Optical Society of America, June 2012).
  17. P. Levitz, G. Ehret, S. K. Sinha, and J. M. Drake, “Porous Vycor glass: the microstructure as probed by electron microscopy, direct energy transfer, small angle scattering, and molecular adsorption,” J. Chem. Phys.95(8), 6151 (1991). [CrossRef]
  18. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu, and V. S.-Y. Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev.60(11), 1278–1288 (2008). [CrossRef] [PubMed]
  19. S. Gai, P. Yang, P. Ma, L. Wang, C. Li, M. Zhang, and L. Jun, “Uniform and size-tunable mesoporous silica with fibrous morphology for drug delivery,” Dalton Trans.41(15), 4511–4516 (2012). [CrossRef] [PubMed]
  20. J. Canning, “New Trends in Structured Optical Fibres for Telecommunications and Sensing,” 5th Int. Conf. on Optical Commun. & Networks and 2nd Int. Symp. on Advances & Trends in Fiber Optics & Applications (ICOCN/ATFO 2006), Chengdu, China, (July 2006).
  21. C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning, “Characterization of nanoscale features in tapered fractal and photonic crystal fibers,” Opt. Express19(3), 1860–1865 (2011). [CrossRef] [PubMed]
  22. J. Canning, “Structured Optical Fibres and the Application of their Linear and Non-Linear Properties,” in Selected Topics in Metamaterials and Photonic Crystals Ed. Antonello Andreone, Andrea Cusano, Antonello Cutolo, Vincenzo Galdi, University of Sannio, Italy (World Scientific, 2011) ISBN 978–981–4355–18–6
  23. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature389(6653), 827–829 (1997). [CrossRef]
  24. L. Cademartiri, K. J. M. Bishop, P. W. Snyder, and G. A. Ozin, “Using shape for self-assembly,” Phil. Tran. R. Soc. A: 28, 370, 2824–2847 (2012). [CrossRef]
  25. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science270(5240), 1335–1338 (1995). [CrossRef]
  26. P. C. Ohara, D. V. Leff, J. R. Heath, and W. M. Gelbart, “Crystallization of opals from polydisperse nanoparticles,” Phys. Rev. Lett.75(19), 3466–3469 (1995). [CrossRef] [PubMed]
  27. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999). [CrossRef]
  28. D. M. Adams, Inorganic Solids, John Wiley & Sons, Great Britain, (1974).
  29. L. B. McCusker, F. Liebau, and G. Engelhardt, “Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001,” Pure Appl. Chem.73(2), 381–394 (2001). [CrossRef]
  30. J. Rouquérol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pericone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids,” Pure Appl. Chem.66(8), 1739–1758 (1994). [CrossRef]
  31. P. J. Branton, P. G. Hall, K. S. W. Sing, H. Reichert, F. Schüth, and K. K. Unger, “Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent,” Faraday Trans.90, 2965–2967 (1994). [CrossRef]
  32. R. Schmidt, E. W. Hansen, M. Sticker, D. Akporiaye, and O. H. Ellestad, “Pore Size Determination of MCM-41 Mesoporous Materials by means of 'H NMR Spectroscopy, N2 adsorption, and HREM. A Preliminary Study,” J. Am. Chem. Soc.117(14), 4049–4056 (1995). [CrossRef]
  33. E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms,” J. Am. Chem. Soc.73(1), 373–380 (1951). [CrossRef]
  34. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc.60(2), 309–319 (1938). [CrossRef]
  35. J. T. Randall, H. P. Rooksby, and B. S. Cooper, “Structure of glasses: the evidence of X-ray diffraction,” J. Soc. Glass Technol.14, 219 (1930).
  36. E. Bourova, S. C. Parker, and P. Richet, “Atomistic simulation of cristobalite at high temperature,” Phys. Rev. B62(18), 12052–12061 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited