OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2037–2044

Spectroscopic properties and energy transfers in Cr, Tm, Ho triple-doped Y3Al5O12 transparent ceramics

Binjie Fei, Wang Guo, Jiquan Huang, Qiufeng Huang, Jian Chen, Junting Li, Weidong Chen, Ge Zhang, and Yongge Cao  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 12, pp. 2037-2044 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly transparent Cr, Tm, Ho triple-doped Y3Al5O12 (YAG) ceramics were prepared using advanced ceramic technology and their spectroscopic properties were studied for infrared laser applications. 2.09 μm emission was observed by exciting at 430 nm, which indicated the realization of energy transition from Cr3+ to Ho3+ with Tm3+ acted as an intermediate media. The efficiency between the energy transfer (Tm3+) 3F4→ (Ho3+) 5I7 and its back-transfer process was 7.87, which was comparable to that of YAG single crystal and YLF. Studies on the optical gain and stimulated emission characteristics suggested that this triple-doped YAG ceramic could be an appropriate material for 2.09 μm laser application.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Rare-Earth-Doped Materials

Original Manuscript: August 12, 2013
Revised Manuscript: October 2, 2013
Manuscript Accepted: October 2, 2013
Published: November 5, 2013

Binjie Fei, Wang Guo, Jiquan Huang, Qiufeng Huang, Jian Chen, Junting Li, Weidong Chen, Ge Zhang, and Yongge Cao, "Spectroscopic properties and energy transfers in Cr, Tm, Ho triple-doped Y3Al5O12 transparent ceramics," Opt. Mater. Express 3, 2037-2044 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Rustad and K. Stenersen, “Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers,” IEEE J. Sel. Top. Quant.3(1), 82–89 (1997). [CrossRef]
  2. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at lambda=1.15 microm,” Opt. Lett.35(4), 490–492 (2010). [CrossRef] [PubMed]
  3. T. R. W. Herrmann, E. N. Liatsikos, U. Nagele, O. Traxer, A. S. Merseburger, and EAU Guidelines Panel on Lasers, Technologies, “EAU guidelines on laser technologies,” Eur. Urol.61(4), 783–795 (2012). [CrossRef] [PubMed]
  4. R. M. Kuntz, “Current role of lasers in the treatment of benign prostatic hyperplasia (BPH),” Eur. Urol.49(6), 961–969 (2006). [CrossRef] [PubMed]
  5. W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp.506(2), 745–748 (2010). [CrossRef]
  6. H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011). [CrossRef] [PubMed]
  7. Y. Kalisky, J. Kagan, D. Sagie, A. Brenier, C. Pedrini, and G. Boulon, “Spectroscopic properties, energy-transfer, and laser operation of pulsed holmium lasers,” J. Appl. Phys.70(8), 4095–4100 (1991). [CrossRef]
  8. K. S. Lim, C. W. Lee, S. T. Kim, H. J. Seo, and C. D. Kim, “Infrared to visible up-conversion in Cr:Tm:Ho:YAG,” J. Lumin.87-89(9), 1008–1010 (2000). [CrossRef]
  9. C. Zaldo, M. J. Martin, R. Sole, M. Aguilo, F. Diaz, P. Roura, and M. Lopez de Miguel, “Optical spectroscopy of Ho3+ and Tm3+ ions in KTiOPO4 single crystals,” Opt. Mater.10(1), 29–37 (1998). [CrossRef]
  10. G. A. Kumar, M. Pokhrel, D. K. Sardar, P. Samuel, K. I. Ueda, T. Yanagitani, and H. Yagi, “2.1 mum emission spectral properties of Tm and Ho doped transparent YAG ceramic,” Sci. Adv. Mater.4(5), 617–622 (2012). [CrossRef]
  11. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett.86(16), 161116 (2005). [CrossRef]
  12. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008). [CrossRef]
  13. S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc.89(6), 1945–1950 (2006). [CrossRef]
  14. J. Dong, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+: Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006). [CrossRef]
  15. F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012). [CrossRef]
  16. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett.37(6), 1076–1078 (2012). [CrossRef] [PubMed]
  17. B. J. Fei, J. Q. Huang, W. Guo, Q. F. Huang, J. Chen, F. Tang, W. C. Wang, and Y. G. Cao, “Spectroscopic properties and laser performance of Tm:YAG ceramics,” J. Lumin.142, 189–195 (2013). [CrossRef]
  18. J. Zhou, W. X. Zhang, T. D. Huang, L. A. Wang, J. Li, W. B. Liu, B. X. Jiang, Y. B. Pan, and J. K. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011). [CrossRef]
  19. N. Karadimitriou, B. Klinkenberg, D. N. Papadopoulos, and A. A. Serafetinides, “Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications,” SPIE-OSA6633, 66331H, 66331H-7 (2007). [CrossRef]
  20. N. P. Barnes, K. E. Murray, and M. G. Jani, “Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison,” Appl. Opt.36(15), 3363–3374 (1997). [CrossRef] [PubMed]
  21. S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater.30(1), 129–131 (2007). [CrossRef]
  22. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836 (1953). [CrossRef]
  23. Z. D. Luo, Y. D. Huang, and X. Y. Chen, Spectroscopy of Solid-State Laser and Luminescent Materials (Nova Science Publishers, 2007).
  24. B. M. Walsh, N. P. Barnes, and B. P. Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin.75(2), 89–98 (1997). [CrossRef]
  25. K. J. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V. B. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 microm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express18(7), 6537–6544 (2010). [CrossRef] [PubMed]
  26. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys. Condens. Matter4(44), 8525–8542 (1992). [CrossRef]
  27. D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev.134(2A), A299–A306 (1964). [CrossRef]
  28. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho-Yag,” IEEE J. Quantum Electron.24(6), 924–933 (1988). [CrossRef]
  29. X. L. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids195(1-2), 113–124 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited