OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2078–2085

Sol-gel fabrication and characterization of ZnO and Zn2SiO4 nanoparticles embedded silica glass-ceramic waveguides

Kumara Raja Kandula, Anirban Sarkar, and B N Shivakiran Bhaktha  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 12, pp. 2078-2085 (2013)
http://dx.doi.org/10.1364/OME.3.002078


View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

ZnO and Zn2SiO4 nanoparticles embedded SiO2 waveguides, a new candidate for fabrication of low-loss glass-ceramic active-waveguides for integrated optic applications, were fabricated by the sol-gel technique using dip-coating process. The waveguides fabricated from the sol-gel solution composed of (100-x) SiO2x ZnO (x = 25, 30, and 35 mol %) exhibited uniform thickness (1.5 ± 0.1 µm), and refractive index of 1.529 ± 0.005 (for x = 35 mol %) at 632.8 nm. Propagation loss of 1.4 ± 0.2 dB/cm at 632.8 nm was observed in the transparent glass-ceramic waveguides. The as-prepared waveguides contained nanoparticles of average size ~15 nm uniformly dispersed in the SiO2 matrix. Formation of Zn2SiO4 along with ZnO nanoparticles in the waveguides is confirmed from the X-ray diffraction patterns and photoluminescence spectra. The tuning of the optical and spectroscopic properties by controlled heat-treatment of the as-prepared active-waveguides has been demonstrated.

© 2013 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(250.5230) Optoelectronics : Photoluminescence
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: October 21, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 1, 2013
Published: November 18, 2013

Citation
Kumara Raja Kandula, Anirban Sarkar, and B N Shivakiran Bhaktha, "Sol-gel fabrication and characterization of ZnO and Zn2SiO4 nanoparticles embedded silica glass-ceramic waveguides," Opt. Mater. Express 3, 2078-2085 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-12-2078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000). [CrossRef]
  2. D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012). [PubMed]
  3. K.-K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J. H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000). [CrossRef]
  4. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection,” Sens. Actuators B Chem.162(1), 237–243 (2012). [CrossRef]
  5. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008). [CrossRef] [PubMed]
  6. J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs, “Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells,” Nano Lett.8(5), 1477–1481 (2008). [CrossRef] [PubMed]
  7. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Lett.7(8), 2196–2200 (2007). [CrossRef] [PubMed]
  8. X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon,” Chem. Phys. Lett.364(1-2), 57–63 (2002). [CrossRef]
  9. E. J. Ibanga, C. L. Luyer, and J. Mugnier, “Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films,” Mater. Chem. Phys.80(2), 490–495 (2003). [CrossRef]
  10. X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun.285(6), 1225–1228 (2012). [CrossRef]
  11. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3(2), 160–175 (2007). [CrossRef]
  12. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009). [CrossRef]
  13. Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, and G. C. Righini, “Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach,” Appl. Phys. Lett. 91(7), 071909 (2007).
  14. S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett. 93(21), 211904 (2008).
  15. M. Nogami, T. Enomoto, and T. Hayakawa, “Enhanced fluorescence of Eu3+ induced by energy transfer from nano sized SnO2 crystals in glass,” J. Lumin.97(3-4), 147–152 (2002). [CrossRef]
  16. S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared in an organic–inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000). [CrossRef]
  17. J. El Ghoul, K. Omri, L. El Mir, C. Barthou, and S. Alaya, “Sol–gel synthesis and luminescent properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials,” J. Lumin.132(9), 2288–2292 (2012). [CrossRef]
  18. Z. Fu, B. Yang, L. Li, W. Dong, C. Jia, and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” J. Phys. Condens. Matter15(17), 2867–2873 (2003). [CrossRef]
  19. S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Status Solidi201(9), 2134–2142 (2004). [CrossRef]
  20. O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, and Y. Gao, “Erbium doped fluoride glass–ceramics waveguides fabricated by PVD,” J. Non-Cryst. Solids354(30), 3586–3591 (2008). [CrossRef]
  21. A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G. C. Righini, M. Ferrari, L. Zampedri, A. Monteil, and P. Lazzeri, “Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+ -activated silica–titania planar waveguides fabricated by rf-sputtering,” Opt. Mater.25(2), 117–122 (2004). [CrossRef]
  22. R. R. Gonçalves, G. Carturan, M. Montagna, A. Ferrari, L. Zampedri, S. Pelli, G. C. Righini, S. J. L. Ribeiro, and Y. Messaddeq, “Erbium-activated HfO2-based waveguides for photonics,” Opt. Mater.25(2), 131–139 (2004). [CrossRef]
  23. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys.95(6), 3141–3147 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited