OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2096–2111

A parametric study of laser induced-effects in terbium-doped borosilicate glasses: prospects for compact magneto-optic devices

Qiang Liu, B. F. Johnston, S. Gross, M. J. Withford, and M. J. Steel  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 12, pp. 2096-2111 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a study of ultrafast laser waveguide inscription in two magneto-optical glasses. Two types of femtosecond laser systems operating in kHz and MHz repetition rate regimes are used for waveguide fabrication. Single mode waveguides in the visible are obtained in both writing regimes and exhibit distinct optical properties depending on laser writing conditions and the nature of glasses. Photodarkening, produced as a fabrication byproduct and associated with waveguide propagation loss, is shown to be reversible via annealing. Photodarkening behaves differently in the magneto-optical glasses studied, most likely due to large differences in the concentration of lanthanum and/or gallium in the materials.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.3820) Materials : Magneto-optical materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3240) Optical devices : Isolators
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Laser Materials Processing

Original Manuscript: September 26, 2013
Revised Manuscript: November 5, 2013
Manuscript Accepted: November 5, 2013
Published: November 19, 2013

Qiang Liu, B. F. Johnston, S. Gross, M. J. Withford, and M. J. Steel, "A parametric study of laser induced-effects in terbium-doped borosilicate glasses: prospects for compact magneto-optic devices," Opt. Mater. Express 3, 2096-2111 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  2. E. Glezer, M. Milosavljevic, L. Huang, R. Finlay, T. Her, J. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21, 2023–2025 (1996). [CrossRef] [PubMed]
  3. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon.2, 219–225 (2008). [CrossRef]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  5. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011). [CrossRef]
  6. T. Shih, R. Gattass, C. Mendonca, and E. Mazur, “Faraday rotation in femtosecond laser micromachined waveguides,” Opt. Express15, 5809–5814 (2007). [CrossRef] [PubMed]
  7. J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids213, 193–198 (1997). [CrossRef]
  8. A. Villaverde, D. Donatti, and D. Gozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C: Solid State Phys.11, L495–L498 (1978). [CrossRef]
  9. http://www.laserglass.com.cn/english-page/index/product/Faraday.htm .
  10. http://www.xaot.com/sdp/173803/4/cp-4304059/0/Magneto-Optical_Glass.html .
  11. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses.” Opt. Express13, 5676–5681 (2005). [CrossRef] [PubMed]
  12. “BeamPROP by RSoft Design Group, Inc.” http://www.rsoftdesign.com .
  13. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett.37, 996–998 (2012). [CrossRef] [PubMed]
  14. C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process.76, 351–354 (2003). [CrossRef]
  15. G. R. Atkins and A. L. G. Carter, “Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers,” Opt. Lett.19, 874–876 (1994). [CrossRef] [PubMed]
  16. H. Dachraoui, R. Rupp, K. Lengyel, M. Ellabban, M. Fally, G. Corradi, L. Kovacs, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B: Condens. Matter74, 144104 (2006). [CrossRef]
  17. S. Zhang, B. Zhu, S. Zhou, S. Xu, and J. Qiu, “Multi-photon absorption upconversion luminescence of a Tb3+-doped glass excited by an infrared femtosecond laser,” Opt. Express15, 6883–6888 (2007). [CrossRef] [PubMed]
  18. H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater.15, 7–25 (2000). [CrossRef]
  19. H. Hosono, T. Kinoshita, H. Kawazoe, M. Yamazaki, Y. Yamamoto, and N. Sawanobori, “Long lasting phosphorescence properties of Tb3+-activated reduced calcium aluminate glasses,” J. Phys.: Condens. Matter10, 9541–9547 (1998). [CrossRef]
  20. Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, H. Machida, and T. Fukuda, “Annealing Effect in Terbium-Scandium-Aluminum Garnet Single Crystal,” Jpn. J. Appl. Phys.41, 6020–6022 (2002). [CrossRef]
  21. R. Verma, K. Kumar, and S. Rai, “Inter-conversion of Tb3+and Tb4+states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci.12, 1146–1151 (2010). [CrossRef]
  22. R. M. Almeida, “Vibrational Spectroscopy of Glasses,” J. Non-Cryst. Solids106, 347–358 (1988). [CrossRef]
  23. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010). [CrossRef]
  24. P. Colomban, A. Tournie, and L. Bellot-Gurlet, “Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide,” J. Raman Spectrosc.37, 841–852 (2006). [CrossRef]
  25. P. McMillan, “Structural studies of silicate glasses and melts – applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).
  26. D. Manara, A. Grandjean, and D. Neuville, “Structure of borosilicate glasses and melts: A revision of the Yun, Bray and Dell model,” J. Non-Cryst. Solids355, 2528–2531 (2009). [CrossRef]
  27. T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass,” J. Non-Cryst. Solids321, 157–168 (2003). [CrossRef]
  28. D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer, “Raman study on B2O3-CaO glasses,” J. Mol. Struct.651, 485–488 (2003). [CrossRef]
  29. V. N. Bykov, T. N. Ivanova, and O. N. Koroleva, “Raman spectroscopy of borosilicate and germanate-silicate glasses and melts,” Russ. Metall. (Metally)2011, 719–722 (2011). [CrossRef]
  30. T. Yano, N. Kunimine, S. Shibata, and M. Yamane, “Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units,” J. Non-Cryst. Solids321, 137–146 (2003). [CrossRef]
  31. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. Tuthill, S. Olaizola, A. Fuerbach, and M. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express21, 2978–2986 (2013). [CrossRef] [PubMed]
  32. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34, 1285–1287 (2009). [CrossRef] [PubMed]
  33. M. C. Paul, A. V. Kir, Y. O. Barmenkov, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Yb2O3 Doped Yttrium-Alumino-Silicate Nano-Particles Based LMA Optical Fibers for High-Power Fiber Lasers,” J. Lightwave Technol.30, 2062–2068 (2012). [CrossRef]
  34. S. Yoo, M. Kalita, A. Boyland, A. Webb, R. Standish, J. K. Sahu, M. C. Paul, S. Das, S. K. Bhadra, and M. Pal, “Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening,” Opt. Commun.283, 3423–3427 (2010). [CrossRef]
  35. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. of SPIE6873, 68731E (2008). [CrossRef]
  36. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening.” J. Chem. Phys.136, 014503 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited