OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2112–2131

RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy

F. Verger, V. Nazabal, F. Colas, P. Němec, C. Cardinaud, E. Baudet, R. Chahal, E. Rinnert, K. Boukerma, I. Peron, S. Deputier, M. Guilloux-Viry, J.P. Guin, H. Lhermite, A. Moreac, C. Compère, and B. Bureau  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 12, pp. 2112-2131 (2013)
http://dx.doi.org/10.1364/OME.3.002112


View Full Text Article

Enhanced HTML    Acrobat PDF (2099 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The primary objective of this study is the development of transparent thin film materials in the IR enabling strong infrared absorption of organic compounds in the vicinity of metal nanoparticles by the surface plasmon effect. For developing these optical micro-sensors, hetero-structures combining gold nanoparticles and chalcogenide planar waveguides are fabricated and adequately characterized. Single As2S3 and Ge25Sb10Se65 amorphous chalcogenide thin films are prepared by radio-frequency magnetron sputtering. For the fabrication of gold nanoparticles on a chalcogenide planar waveguide, direct current sputtering is employed. Fabricated single layers or hetero-structures are characterized using various techniques to investigate the influence of deposition parameters. The nanoparticles of gold are functionalized by a self-assembled monolayer of 4-nitrothiophenol. Finally, the surface enhanced infrared absorption spectra of 4-nitrothiophenol self-assembled on fabricated Au/Ge-Sb-Se thin films hetero-structures are measured and analyzed. This optical component presents a ~24 enhancement factor for the detection of NO2 symmetric stretching vibration band of 4-nitrothiophenol at 1336 cm−1.

© 2013 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(160.2750) Materials : Glass and other amorphous materials
(300.6340) Spectroscopy : Spectroscopy, infrared
(310.1860) Thin films : Deposition and fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: September 3, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 15, 2013
Published: November 22, 2013

Citation
F. Verger, V. Nazabal, F. Colas, P. Němec, C. Cardinaud, E. Baudet, R. Chahal, E. Rinnert, K. Boukerma, I. Peron, S. Deputier, M. Guilloux-Viry, J.P. Guin, H. Lhermite, A. Moreac, C. Compère, and B. Bureau, "RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy," Opt. Mater. Express 3, 2112-2131 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-12-2112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev.108(2), 400–422 (2008). [CrossRef] [PubMed]
  2. M. Zourob and A. Lakhtakia, Optical Guided-wave Chemical and Biosensors I (Springer, 2010).
  3. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).
  4. K. Nishikida, E. Nishio, and R. W. Hannah, Selected Applications of Modern FT-IR Techniques (Kodansha, 1996).
  5. A. Barth, “Infrared spectroscopy of proteins,” Biochim. Biophys. Acta-Bioenergetics1767(9), 1073–1101 (2007). [CrossRef]
  6. B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol.55(4), 221–235 (2012). [CrossRef]
  7. K. D. Shepherd and M. G. Walsh, “Infrared spectroscopy - enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries,” J. Near Infrared Spec.15(2), 1–19 (2007). [CrossRef]
  8. R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac-Trend. Anal. Chem.18, 85–93 (1999).
  9. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun3, 1108 (2012). [CrossRef] [PubMed]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  11. F. Charpentier, V. Nazabal, J. Troles, Q. Coulombier, L. Brilland, C. Boussard-Pledel, P. Nemec, H. Lhermite, J. Charrier, F. Smektala, M. Frumar, K. Le Pierres, N. Thybaud, and B. Bureau, “Infrared optical sensor for CO2 detection,” in Optical Sensors, F. Baldini, J. Homola, and R. A. Lieberman, eds., vol. 7356, (SPIE, 2009), pp. 735610.
  12. M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9(9), 7398–7411 (2009). [CrossRef] [PubMed]
  13. J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sensor. Actuat. B-Chem.173, 468–476 (2012).
  14. J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  15. M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007). [CrossRef]
  16. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011). [CrossRef] [PubMed]
  17. C. C. Huang, D. W. Hewak, and J. V. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express12(11), 2501–2506 (2004). [CrossRef] [PubMed]
  18. J. M. Gonzalez-Leal, A. Ledesma, A. M. Bernal-Oliva, R. Prieto-Alcon, E. Marquez, J. A. Angel, and J. Carabe, “Optical properties of thin-film ternary Ge10As15Se75 chalcogenide glasses,” Mater. Lett.39(4), 232–239 (1999). [CrossRef]
  19. L. Tichý, H. Ticha, P. Nagels, R. Callaerts, R. Mertens, and M. Vlcek, “Optical properties of amorphous As-Se and Ge-As-Se thin films,” Mater. Lett.39(2), 122–128 (1999). [CrossRef]
  20. J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguides,” J. Appl. Phys.104(7), 073110 (2008). [CrossRef]
  21. V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Tec.8(5), 990–1000 (2011). [CrossRef]
  22. M. Osawa and M. Ikeda, “Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem.95(24), 9914–9919 (1991). [CrossRef]
  23. J. M. Delgado, J. M. Orts, and A. Rodes, “A comparison between chemical and sputtering methods for preparing thin-film silver electrodes for in situ ATR-SEIRAS studies,” Electrochim. Acta52(14), 4605–4613 (2007). [CrossRef]
  24. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B247(8), 2071–2074 (2010). [CrossRef]
  25. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  26. A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett.45(3), 201–204 (1980). [CrossRef]
  27. M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn.70(12), 2861–2880 (1997). [CrossRef]
  28. T. Kamata, A. Kato, J. Umemura, and T. Takenaka, “Intensity enhancement of infrared attenuated total reflection spectra of stearic acid Langmuir-Blodgett monolayers with evaporated silver island films,” Langmuir3(6), 1150–1154 (1987). [CrossRef]
  29. F. Verger, T. Pain, V. Nazabal, C. Boussard-Plédel, B. Bureau, F. Colas, E. Rinnert, K. Boukerma, C. Compère, M. Guilloux-Viry, S. Deputier, A. Perrin, and J. P. Guin, “Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glass,” Sensor. Actuat. B-Chem.175, 142–148 (2012).
  30. J. Tauc, Amorphous and Liquid Semiconductors, J. Tauc ed. (Plenum, London, New York, 1974).
  31. W. C. Tan, M. E. Solmaz, J. Gardner, R. Atkins, and C. Madsen, “Optical characterization of a-As2S3 thin films prepared by magnetron sputtering,” J. Appl. Phys.107(3), 033524 (2010). [CrossRef]
  32. F. Charpentier, M. Dussauze, M. Cathelinaud, G. Delaizir, E. I. Kamitsos, J. L. Adam, B. Bureau, and V. Nazabal, “Aging process of photosensitive chalcogenide films deposited by electron beam deposition,” J. Alloys Compd.509(27), 7330–7336 (2011). [CrossRef]
  33. S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35(3), 1345–1361 (1987). [CrossRef] [PubMed]
  34. L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70-xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005). [CrossRef]
  35. K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), R14985(1999). [CrossRef]
  36. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010). [CrossRef]
  37. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge,Sn)-(S, or Se)4/2 cluster by vibrational-spectra,” J. Non-Cryst. Solids59–60, 883–886 (1983). [CrossRef]
  38. P. Němec, B. Frumarova, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000). [CrossRef]
  39. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003). [CrossRef]
  40. J. H. Baeck, T. H. Kim, H. J. Choi, K. H. Jeong, and M. H. Cho, “Phase transformation through metastable structures in atomically controlled Se/Sb multilayers,” J. Phys. Chem. C115(27), 13462–13470 (2011). [CrossRef]
  41. R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in AsxGexSe1-2x glasses: a high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011). [CrossRef]
  42. D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids358(2), 163–167 (2012). [CrossRef]
  43. Y. Chen, X. Shen, R. Wang, G. Wanga, S. Dai, T. Xu, and Q. Nie, “Optical and structural properties of Ge–Sb–Se thin films fabricated by sputtering and thermal evaporation,” J. Alloys Compd.548, 155–160 (2013). [CrossRef]
  44. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011). [CrossRef] [PubMed]
  45. R. C. Munoz, G. Vidal, M. Mulsow, J. G. Lisoni, C. Arenas, A. Concha, F. Mora, R. Espejo, G. Kremer, L. Moraga, R. Esparza, and P. Haberle, “Surface roughness and surface-induced resistivity of gold films on mica: Application of quantitative scanning tunneling microscopy,” Phys. Rev. B62(7), 4686–4697 (2000). [CrossRef]
  46. M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), pp. 163–187.
  47. R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc.58(11), 324–338 (2004). [CrossRef] [PubMed]
  48. Z. J. Zhang and T. Imae, “Study of surface-enhanced infrared spectroscopy - 1. Dependence of the enhancement on thickness of metal island films and structure of chemisorbed molecules,” J. Colloid Interface Sci.233(1), 99–106 (2001). [CrossRef] [PubMed]
  49. E. Bjerke, Amy, Griffiths, and R. Peter, Surface-enhanced infrared absorption spectroscopy of p-nitrothiophenol on vapor-deposited platinum films (Society for Applied Spectroscopy, Frederick, MD, USA, 2002).
  50. P. M. Mendes, K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart, “Electrochemically controllable conjugation of proteins on surfaces,” Bioconjug. Chem.18(6), 1919–1923 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited