OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 12 — Dec. 1, 2013
  • pp: 2132–2140

Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses

Moritz Grehn, Thomas Seuthe, Wu-Jung Tsai, Michael Höfner, Alexander Wernher Achtstein, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Joachim Eichler, and Jörn Bonse  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 12, pp. 2132-2140 (2013)
http://dx.doi.org/10.1364/OME.3.002132


View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear optical properties such as the nonlinear refractive index and nonlinear absorption are characterized by z-scan measurements for a series of silicate glasses upon irradiation with laser pulses of 130 fs duration and 800 nm center wavelength. The stoichiometry of the silicate glasses is varied systematically to reveal the influence of the glass composition on the nonlinear optical properties. Additionally, the thermal properties such as glass–transformation temperature and thermal expansion coefficient are obtained from dilatometric measurements. It is found that the nonlinear refractive index is mainly related to the silica matrix. The nonlinear absorption is increased with the addition of network–forming ions.

© 2013 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: August 27, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 18, 2013
Published: November 25, 2013

Citation
Moritz Grehn, Thomas Seuthe, Wu-Jung Tsai, Michael Höfner, Alexander Wernher Achtstein, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Joachim Eichler, and Jörn Bonse, "Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses," Opt. Mater. Express 3, 2132-2140 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-12-2132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12(2), 706–714 (1975). [CrossRef]
  2. D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time resolved interferometry - Application to optical-materials for high power neodym lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976). [CrossRef]
  3. M. J. Weber, D. Milam, W. L. Smith, “Nonlinear refractive-index of glass and crystals,” Opt. Eng. 17(5), 175463(1978). [CrossRef]
  4. K. Jamshidi–Ghaleh, N. Mansour, A. Namdar, “Nonlinear optical properties of soda-lime glass at 800 nm femtosecond irradiation,” Laser Phys. 15, 1714–1717 (2005).
  5. C. B. de Araújo, E. L. Falcão–Filho, A. Humeau, D. Guichaoua, G. Boudebs, L. R. P. Kassab, “Picosecond third-order nonlinearity of lead-oxide glasses in the infrared,” Appl. Phys. Lett. 87(22), 221904 (2005). [CrossRef]
  6. K. Jamshidi–Ghaleh, N. Mansour, D. Ashkenasi, H.-J. Hoffmann, “Nonlinear optical response in alkali-silicate glasses at 800 nm femtosecond irradiation,” Opt. Commun. 246(1-3), 213–218 (2005). [CrossRef]
  7. K. Jamshidi–Ghaleh, H. Masalehdan, “Modeling of nonlinear responses in BK7 glass under irradiation of femtosecond laser pulses,” Opt. Quantum Electron. 41(1), 47–53 (2009). [CrossRef]
  8. S. A. Moghaddam, G. K. Jamshidi–Galeh, “Nonlinear optical response and optical properties modification in crown B270 glass sample with fs-laser pulses,” J. Theor. Appl. Phys. 4, 21–25 (2010).
  9. M. Sheik–Bahae, A. A. Said, T. H. Wei, D. Hagan, E. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  10. R. Adair, L. L. Chase, S. Payne, “Nonlinear refractive-index measurements of glass using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987). [CrossRef]
  11. X. Lu, Q. Liu, Z. Liu, S. Sun, P. Ding, B. Ding, B. Hu, “Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass,” Appl. Opt. 51(12), 2045–2050 (2012). [CrossRef] [PubMed]
  12. N. L. Boling, A. J. Glass, A. Owyoung, “Empirical relations for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978). [CrossRef]
  13. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011). [CrossRef]
  14. A. Royon, C. Rivero-Baleine, A. Zoubir, L. Canioni, M. Couzi, T. Cardinal, K. Richardson, “Evolution of the linear and nonlinear optical properties of femtosecond laser exposed fused silica,” J. Opt. Soc. Am. B 26(11), 2077–2083 (2009). [CrossRef]
  15. T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett. 100(22), 224101 (2012). [CrossRef]
  16. T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3(6), 755–764 (2013). [CrossRef]
  17. R. L. Sutherland, ed., Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  18. J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B 15(2), 627–637 (1966). [CrossRef]
  19. A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol. 45, 244–254 (2004).
  20. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999). [CrossRef]
  21. A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A. Mater. 69(7), S373–S376 (1999). [CrossRef]
  22. T. Bakos, S. N. Rashkeev, S. T. Pantelides, “Optically active defects in SiO2: The nonbridging oxygen center and the interstitial OH molecule,” Phys. Rev. B 70(7), 075203 (2004). [CrossRef]
  23. A. Hertwig, S. Martin, J. Krüger, W. Kautek, F. Krausz, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A. Mater. 79, 1075–1077 (1999).
  24. L. Pan, N. Tamai, K. Kamada, S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91(5), 051902 (2007). [CrossRef]
  25. M. Sheik-Bahae, A. A. Said, E. W. van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989). [CrossRef] [PubMed]
  26. H. Scholze, Glas (Springer, 1988).
  27. J. R. Tessman, A. H. Kahn, W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92(4), 890–895 (1953). [CrossRef]
  28. M. Rumi, J. W. Perry, “Two photon absorption: an overview of measurements and principles,” Adv. Opt. Phot. 2(4), 451–518 (2010). [CrossRef]
  29. J. He, Y. Qu, H. Li, J. Mi, W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005). [CrossRef] [PubMed]
  30. D. Puerto, J. Siegel, W. Gawelda, M. Galvan–Sosa, L. Ehrentraut, J. Bonse, J. Solis, “Dynamics in plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010). [CrossRef]
  31. G. M. Petrov, J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. At. Mol. Opt. Phys. 41(2), 025601 (2008). [CrossRef]
  32. P. Balling, J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013). [CrossRef] [PubMed]
  33. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003). [CrossRef]
  34. A. J. Taylor, G. Rodriguez, T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21(22), 1812–1814 (1996). [CrossRef] [PubMed]
  35. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, E. W. van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010). [CrossRef]
  36. M. A. Verspui, G. De With, “Three-body abrasion: influence of applied load on bed thickness and particle size distribution in abrasive processes,” J. Eur. Ceram. Soc. 17(2-3), 473–477 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited