OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 143–156

Nanostructured metamaterials with broadband optical properties

Anatoliy V. Goncharenko, Vladimir U. Nazarov, and Kuan-Ren Chen  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 2, pp. 143-156 (2013)
http://dx.doi.org/10.1364/OME.3.000143


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and develop a technique for designing a special class of nonmagnetic metamaterials possessing desired dielectric and optical properties over a broad frequency band. The technique involves the design of nanostructured metallodielectric materials (photonic crystals) with a special layered geometry where the metal content in each layer has to be determined using a fitting procedure. For illustration, we demonstrate the performance of our technique for tailoring metamaterials having epsilon-near-zero and on-demand refractive index (real or imaginary part) over a frequency band. One-, two-, as well as three-dimensional geometries have been considered. In the one-dimensional and two-dimensional cases, the results of semi-analytical calculations are validated by ab initio FDTD simulations.

© 2013 OSA

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Metamaterials

History
Original Manuscript: December 6, 2012
Manuscript Accepted: December 7, 2012
Published: January 2, 2013

Citation
Anatoliy V. Goncharenko, Vladimir U. Nazarov, and Kuan-Ren Chen, "Nanostructured metamaterials with broadband optical properties," Opt. Mater. Express 3, 143-156 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-2-143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  2. R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express17(23), 21030–21041 (2009). [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, and X. Zhang, “Development of bulk optical negative index fishnet metamaterials: achieving a low loss and broadband response through coupling,” Proc. IEEE99(10), 1682–1690 (2011). [CrossRef]
  4. A. V. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep.452(2-3), 33–88 (2007). [CrossRef]
  5. A. V. Goncharenko and K. R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophotonics4(1), 041530 (2010). [CrossRef]
  6. L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B29(5), 984–989 (2012). [CrossRef]
  7. L. Sun and K. W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media,” Appl. Phys. Lett.100(26), 261903 (2012). [CrossRef]
  8. L. Sun, K. W. Yu, and X. Yang, “Integrated optical devices based on broadband epsilon-near-zero meta-atoms,” Opt. Lett.37(15), 3096–3098 (2012). [CrossRef] [PubMed]
  9. A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Metallodielectric broadband metamaterials,” SPIE Newsroom (Feb. 6, 2012). DOI: 10.1117/2.1201201.0040207. [CrossRef]
  10. A. V. Goncharenko, V. U. Nazarov, and K. R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett.101(7), 071907 (2012). [CrossRef]
  11. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011). [CrossRef]
  12. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011). [CrossRef]
  13. K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B64(4), 045116 (2001). [CrossRef]
  14. Z. Y. Li and K. M. Ho, “Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals,” Phys. Rev. B67(16), 165104 (2003). [CrossRef]
  15. A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Phys. Rev. B75(4), 045131 (2007). [CrossRef]
  16. V. U. Nazarov, “Bulk and surface dielectric response of a superlattice with an arbitrary varying dielectric function: A general analytical solution in the local theory in the long-wave limit,” Phys. Rev. B Condens. Matter49(24), 17342–17350 (1994). [CrossRef] [PubMed]
  17. J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett.85(1), 94–96 (2004). [CrossRef]
  18. L. F. Zhang, J. P. Huang, and K. W. Yu, “Gradation-controlled electric field distribution in multilayered colloidal crystals,” Appl. Phys. Lett.92(9), 091907 (2008). [CrossRef]
  19. J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications,” Opt. Express18(26), 26915–26928 (2010). [CrossRef] [PubMed]
  20. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010). [CrossRef] [PubMed]
  21. See, e.g.,B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105(4), 044905 (2009) (and references therein). [CrossRef]
  22. E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, “Epsilon-near-zero material as a unique solution to three different approaches to cloaking,” Appl. Phys., A Mater. Sci. Process.100(2), 321–325 (2010). [CrossRef]
  23. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93(11), 8793–8841 (2003). [CrossRef]
  24. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B20(12), 2448–2453 (2003). [CrossRef]
  25. V. F. Rodríguez-Esquerre, M. Koshiba, H. E. Hernandez-Figueroa, and C. E. Rubio-Mercedes, “Power splitters for waveguides composed by ultralow refractive index metallic nanostructures,” Appl. Phys. Lett.87(9), 091101 (2005). [CrossRef]
  26. T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys.10(11), 115038 (2008). [CrossRef]
  27. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008). [CrossRef]
  28. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  29. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010). [CrossRef] [PubMed]
  30. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B81(16), 165401 (2010). [CrossRef]
  31. M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, “Optical properties of (AuxAg1-x)n clusters embedded in alumina: Evolution with size and stoichiometry,” Phys. Rev. B64(8), 085407 (2001). [CrossRef]
  32. A. K. Sharma and G. J. Mohr, “On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations,” J. Phys. D Appl. Phys.41(5), 055106 (2008). [CrossRef]
  33. J. C. R. Reis, T. P. Iglesias, G. Douhéret, and M. I. Davis, “The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics,” Phys. Chem. Chem. Phys.11(20), 3977–3986 (2009). [CrossRef] [PubMed]
  34. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007). [CrossRef]
  35. C. R. Simovski, M. Popov, and S. He, “Dielectric properties of a thin film consisting of a few layers of molecules or particles,” Phys. Rev. B62(20), 13718–13730 (2000). [CrossRef]
  36. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  37. J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B80(3), 035109 (2009). [CrossRef]
  38. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  39. C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett.35(4), 610–612 (2010). [CrossRef] [PubMed]
  40. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009). [CrossRef] [PubMed]
  41. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Designing materials for plasmonic systems: the alkali-noble intermetallics,” J. Phys. Condens. Matter22(9), 095501 (2010). [CrossRef] [PubMed]
  42. S. K. Golden and G. Papanicolaou, “Bounds for effective parameters of heterogeneous media by analytic continuation,” Commun. Math. Phys.90(4), 473–491 (1983) (and references therein). [CrossRef]
  43. E. Tuncer, “Extracting the spectral density function of a binary composite without a priori assumptions,” Phys. Rev. B71(1), 012101 (2005). [CrossRef]
  44. E. Tuncer, “Geometrical description in binary composites and spectral density representation,” Materials3(1), 585–613 (2010). [CrossRef]
  45. D. Zhang and E. Cherkaev, “Pade approximations for identification of air bubble volume from temperature- or frequency-dependent permittivity of a two-component mixture,” Inv. Probl. Sci. Eng.16(4), 425–445 (2008). [CrossRef]
  46. C. Bonifasi-Lista and E. Cherkaev, “Electrical impedance spectroscopy as a potential tool for recovering bone porosity,” Phys. Med. Biol.54(10), 3063–3082 (2009). [CrossRef] [PubMed]
  47. A. V. Goncharenko, V. Lozovski, and E. F. Venger, “Effective dielectric response of a shape-distributed particle system,” J. Phys. Condens. Matter13(35), 8217–8234 (2001). [CrossRef]
  48. E. Cherkaev and M.-J. Y. Ou, “Dehomogenization: reconstruction of moments of the spectral measure of the composite,” Inv. Probl.24(6), 065008 (2008). [CrossRef]
  49. G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys.55(9), 3382–3410 (1984). [CrossRef]
  50. S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B71(23), 235104 (2005). [CrossRef]
  51. P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,” Phys. Rev. B72(1), 014205 (2005). [CrossRef]
  52. C. J. F. Böttger, Theory of Electric Polarization (Elsevier, 1952).
  53. A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Physica B405(14), 2925–2929 (2010). [CrossRef]
  54. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  55. S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt.13(2), 024001 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited