OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 194–204

Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications

Nikolai Strohfeldt, Andreas Tittl, and Harald Giessen  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 2, pp. 194-204 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and almost no short-term aging effects. Furthermore, we successfully incorporated this optimized material system into plasmonic nanostructures, laying the foundation for a stable and sensitive hydrogen detector.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: November 12, 2012
Revised Manuscript: January 1, 2013
Manuscript Accepted: January 1, 2013
Published: January 9, 2013

Nikolai Strohfeldt, Andreas Tittl, and Harald Giessen, "Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications," Opt. Mater. Express 3, 194-204 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?” Int. J. Hydrogen Energy32(12), 1625–1637 (2007). [CrossRef]
  2. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy36(3), 2462–2470 (2011). [CrossRef]
  3. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem.157(2), 329–352 (2011). [CrossRef]
  4. D. Nau, A. Seidel, R. B. Orzekowsky, S.-H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010). [CrossRef] [PubMed]
  5. E. M. Larsson, S. Syrenova, and C. Langhammer, “Nanoplasmonic sensing for nanomaterials science,” Nanophotonics1(3–4), 249–266 (2012).
  6. P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. Chem.173(1-2), 275–286 (2001). [CrossRef]
  7. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012). [CrossRef] [PubMed]
  8. P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed. (John Wiley & Sons, 2007), p. 1059.
  9. F. A. Lewis, The Palladium Hydrogen System, 1st ed. (Academic Press Inc., 1967), p. 178.
  10. M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, and D. K. Avasthi, “Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: Effect of hydrogen concentration, pressure, and temperature,” J. Appl. Phys.106(9), 093515 (2009). [CrossRef]
  11. P. Gravil and H. Toulhoat, “Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion,” Surf. Sci.430(1-3), 176–191 (1999). [CrossRef]
  12. L. L. Sheu, Z. Karpinski, and W. M. H. Sachtler, “Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts,” J. Phys. Chem.93(12), 4890–4894 (1989). [CrossRef]
  13. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007). [CrossRef] [PubMed]
  14. S. Wilke and M. Scheffler, “Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur,” Surf. Sci.329(1-2), L605–L610 (1995). [CrossRef]
  15. J. Oudar, Deactivation and Poisoning of Catalysts (Taylor & Francis, 1985), p. 344.
  16. P. Fedtke, M. Wienecke, M. Bunescu, M. Pietrzak, K. Deistung, and E. Borchardt, “Hydrogen sensor based on optical and electrical switching,” Sens. Actuators B Chem.100(1-2), 151–157 (2004). [CrossRef]
  17. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd rev. ed. (Taylor & Francis, 1994), p. 192.
  18. Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004). [CrossRef] [PubMed]
  19. B. Chadwick, J. Tann, M. Brungs, and M. Gal, “A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,” Sens. Actuators B Chem.17(3), 215–220 (1994). [CrossRef]
  20. R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys.71(1), 542–544 (1992). [CrossRef]
  21. R. C. Hughes, “Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response,” J. Electrochem. Soc.142(1), 249–254 (1995). [CrossRef]
  22. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010). [CrossRef] [PubMed]
  23. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012). [CrossRef] [PubMed]
  24. S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express18(21), 22271–22282 (2010). [CrossRef] [PubMed]
  25. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011). [CrossRef] [PubMed]
  26. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010). [CrossRef] [PubMed]
  27. T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett.12(5), 2464–2469 (2012). [CrossRef] [PubMed]
  28. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  29. M. A. Poyli, V. M. Silkin, I. P. Chernov, P. M. Echenique, R. D. Muiño, and J. Aizpurua, “Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks,” J. Phys. Chem. Lett.3(18), 2556–2561 (2012). [CrossRef]
  30. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28(2), 238–244 (2011). [CrossRef] [PubMed]
  31. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt.11(11), 114019 (2009). [CrossRef]
  32. W. Vargas, I. Rojas, D. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films496(2), 189–196 (2006). [CrossRef]
  33. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem.78(13), 4416–4423 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited