OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 216–228

Germanium-on-Glass solar cells: fabrication and characterization

Vito Sorianello, Lorenzo Colace, Carlo Maragliano, Dominic Fulgoni, Lee Nash, and Gaetano Assanto  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 2, pp. 216-228 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on Germanium on Glass solar cells realized by wafer bonding, layer splitting and epitaxial regrowth. We provide a detailed description of the layer transfer process and discuss the material characterization. The solar cells are fabricated and tested to extract the most significant figures of merit, evaluating their performance versus device area and operating temperature. The cells exhibit typical conversion efficiencies exceeding 2.4% under AM1.5 irradiation and a maximum efficiency of 3.7% under concentrated excitation. This Germanium on Glass approach is promising in terms of added flexibility in multi-junction engineering and allows a significant cost reduction thanks to the re-usability of the Ge substrates.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.6000) Materials : Semiconductor materials
(310.3840) Thin films : Materials and process characterization

ToC Category:

Original Manuscript: November 8, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: January 9, 2013
Published: January 10, 2013

Vito Sorianello, Lorenzo Colace, Carlo Maragliano, Dominic Fulgoni, Lee Nash, and Gaetano Assanto, "Germanium-on-Glass solar cells: fabrication and characterization," Opt. Mater. Express 3, 216-228 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Mason, “Manufacturing technology: fabrication innovations,” Nat. Photonics2(5), 281–283 (2008). [CrossRef]
  2. S. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” NREL Techn. Report, No. 520-43208 (2009).
  3. R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in Proc. 24th European Photovoltaic Solar Energy Conf., Sep. 2009, pp. 55–61.
  4. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bushari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells94(8), 1314–1318 (2010). [CrossRef]
  5. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008). [CrossRef]
  6. C. D. Law, D. M. Bhusari, S. Mesropian, J. C. Boisvert, W. D. Hong, A. Boca, D. C. Larrabee, C. M. Fetzer, R. R. King, and N. H. Karam, “Semiconductor-bonded III-V multijunction space solar cells,” in Proc. 34th IEEE Photovoltaic Specialists Conference, Jun. 2009, pp. 2237–2239.
  7. M. Konagai, M. Sugimoto, and K. Takahashi, “High efficiency GaAs thin film solar cells by peeled film technology,” J. Cryst. Growth45, 277–280 (1978). [CrossRef]
  8. E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987). [CrossRef]
  9. P. Demeester, I. Pollentier, P. D. Dobbelaere, C. Brys, and P. V. Daele, “Epitaxial lift-off and its applications,” Semicond. Sci. Technol.8(6), 1124–1135 (1993). [CrossRef]
  10. W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon‐on‐insulator,” J. Appl. Phys.64(10), 4943–4950 (1988). [CrossRef]
  11. H. Taguchi, T. Soga, and T. Jimbo, “Epitaxial lift-off process for GaAs solar cell on Si substrate,” Sol. Energy Mater. Sol. Cells85, 85–89 (2005).
  12. J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. Atwater, “High efficiency InGaAs solar cells on Si by InP layer transfer,” Appl. Phys. Lett.91(1), 012108 (2007). [CrossRef]
  13. K. Lee, K. Shiu, J. D. Zimmerman, C. K. Renshaw, and S. R. Forrest, “Multiple growths of epitaxial lift-off solar cells from a single InP substrate,” Appl. Phys. Lett.97(10), 101107 (2010). [CrossRef]
  14. T. Takamoto, T. Agui, A. Yoshida, K. Nakaido, H. Juso, K. Sasaki, K. Nakamora, H. Yamaguchi, T. Kodama, H. Washio, M. Imaizumi, and M. Takahashi, “World's highest efficiency triple-junction solar cells fabricated by inverted layers transfer process,” in Proc. 35th IEEE Photovoltaic Specialists Conference, Jun. 2010, pp. 412–417.
  15. J. Boisvert, D. Law, R. King, D. Bhusari, X. Liu, A. Zakaria, W. Hong, S. Mesropian, D. Larrabee, R. Woo, A. Boca, K. Edmondson, D. Krut, D. Peterson, K. Rouhani, B. Benedikt, and N. H. Karam, “Development of advanced space solar cells at Spectrolab,” in Proc. 35th IEEE Photovoltaic Specialists Conference, Jun. 2010, pp. 123–127.
  16. D. D. Krut, B. T. Cavicchi, and D. R. Lillington, “The development of Ge bottom cell for monolithic and stacked multi-junction applications,” in Proc. 22nd IEEE Photovoltaic Specialists Conference, Oct. 1991, pp. 90–92.
  17. B. Bitnar, “Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications,” Semicond. Sci. Technol.18(5), S221–S227 (2003). [CrossRef]
  18. L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. McLeod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987). [CrossRef]
  19. N. E. Posthuma, J. Van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev.54(5), 1210–1215 (2007). [CrossRef]
  20. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H. von Känel, “Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells,” Semicond. Sci. Technol.21(6), 775–780 (2006). [CrossRef]
  21. R. B. Bergmann, T. J. Rinke, T. A. Wagner, and J. H. Werner, “Thin film solar cells on glass based on the transfer of monocrystalline Si films,” Sol. Energy Mater. Sol. Cells65(1-4), 355–361 (2001). [CrossRef]
  22. X. Y. Lee, A. K. Verma, C. Q. Wu, M. Goertemiller, E. Yablonovitch, J. Eldredge, and D. Lillington, “Thin film GaAs solar cells on glass substrates by epitaxial liftoff,” in Proc. 25th IEEE Photovol. Spec. Conf., Washington D.C., May 13–17, 1996, pp. 53–55.
  23. Y. Yazawa, K. Tamura, S. Watahiki, T. Kitatani, J. Minemura, and T. Warabisako, “GaInP single-junction and GaInP/GaAs two-junction thin-film solar cell structures by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells50(1-4), 229–235 (1998). [CrossRef]
  24. J. M. Zahler, C. G. Ahn, S. Zaghi, H. A. Atwater, C. Chu, and P. Iles, “Ge layer transfer to Si for photovoltaic applications,” Thin Solid Films403-404, 558–562 (2002). [CrossRef]
  25. M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater, “GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates,” Appl. Phys. Lett.92(10), 103503 (2008). [CrossRef]
  26. G. Taraschi, A. J. Pitera, and E. A. Fitzgerald, “Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques,” Solid-State Electron.48(8), 1297–1305 (2004). [CrossRef]
  27. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express16(15), 11513–11518 (2008). [CrossRef] [PubMed]
  28. L. Colace, V. Sorianello, G. Assanto, D. Fulgoni, L. Nash, and M. Palmer, “Germanium on Glass: a novel platform for light sensing devices,” IEEE Photonics J.2(5), 686–695 (2010). [CrossRef]
  29. Y. Chao, R. Scholz, M. Reiche, U. Gösele, and J. C. Woo, “Characteristics of germanium-on-insulators fabricated by wafer bonding and hydrogen-induced layer splitting,” Jpn. J. Appl. Phys.45(11), 8565–8570 (2006). [CrossRef]
  30. H. Min, Y. Joo, and O. Song, “Effects of wafer cleaning and annealing on glass/silicon wafer direct bonding,” J. Electron. Packag.126(1), 120–123 (2004). [CrossRef]
  31. A. Plößl and G. Krauter, “Wafer direct bonding: tailoring adhesion between brittle materials,” Mater. Sci. Eng.25(1-2), 1–88 (1999). [CrossRef]
  32. R. People, “Physics and applications of GexSi1−x/Si strained-layer heterostructures,” IEEE J. Quantum Electron.22(9), 1696–1710 (1986). [CrossRef]
  33. C. L. Andre, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, “Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates,” J. Appl. Phys.98(1), 014502 (2005). [CrossRef]
  34. S. P. Philipps, W. Guter, E. Welser, J. Schöne, M. Steiner, F. Dimroth, and A.W. Bett, Present Status in the Development of III–V Multi-Junction Solar Cells (Springer, 2012), Chap. 1.
  35. D. P. Malta, J. B. Posthill, R. J. Markunas, and T. P. Humphreys, “Low defect density germanium on silicon obtained by a novel growth phenomenon,” Appl. Phys. Lett.60(7), 844–846 (1992). [CrossRef]
  36. G. Masini, L. Colace, F. Galluzzi, and G. Assanto, “Advances in the field of poly-Ge on Si near infrared photodetectors,” Mater. Sci. Eng. B69-70, 257–260 (2000). [CrossRef]
  37. W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77°K and 300°K,” Phys. Rev.99(4), 1151–1155 (1955). [CrossRef]
  38. M. A. Green, Solar Cells (Prentice-Hall, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited