OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 248–259

Improved photoluminescence and afterglow of CaTiO3:Pr3+ by ammonia treatment

Songhak Yoon, Eugenio H. Otal, Alexandra E. Maegli, Lassi Karvonen, Santhosh K. Matam, Stefan Riegg, Stefan G. Ebbinghaus, Juan C. Fallas, Hans Hagemann, Bernhard Walfort, Simone Pokrant, and Anke Weidenkaff  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 2, pp. 248-259 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phosphor CaTiO3:Pr3+ was synthesized via a solid-state reaction in combination with a subsequent annealing under flowing NH3. Comparatively large off-center displacements of Ti in the TiO6 octahedra were confirmed for as-synthesized CaTiO3:Pr3 by XANES. Raman spectroscopy showed that the local crystal structure becomes highly symmetric when the powders are ammonolyzed at 400 °C. Rietveld refinement of powder X-ray diffraction data revealed that the samples ammonolyzed at 400 °C have the smallest lattice strain and at the same time the largest average Ti-O-Ti angles were obtained. The samples ammonolyzed at 400 °C also showed the smallest mass loss during the thermal re-oxidation in thermogravimetric analysis (TGA). Enhanced photolumincescence brightness and an improved decay curve as well as the highest reflectance were obtained for the samples ammonolyzed at 400 °C. The improved photoluminescence and afterglow by NH3 treatment are explained as a result of the reduced concentration of oxygen excesses with simultaneous relaxation of the lattice strain.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: December 3, 2012
Revised Manuscript: December 26, 2012
Manuscript Accepted: January 7, 2013
Published: January 16, 2013

Songhak Yoon, Eugenio H. Otal, Alexandra E. Maegli, Lassi Karvonen, Santhosh K. Matam, Stefan Riegg, Stefan G. Ebbinghaus, Juan C. Fallas, Hans Hagemann, Bernhard Walfort, Simone Pokrant, and Anke Weidenkaff, "Improved photoluminescence and afterglow of CaTiO3:Pr3+ by ammonia treatment," Opt. Mater. Express 3, 248-259 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Y. Tsao, H. D. Saunders, J. R. Creighton, M. E. Coltrin, and J. A. Simmons, “Solid-state lighting: an energy-economics perspective,” J. Phys. D Appl. Phys.43(35), 354001 (2010). [CrossRef]
  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996). [CrossRef]
  3. B. M. J. Smets, “Phosphors based on rare-earths, a new era in fluorescent lighting,” Mater. Chem. Phys.16(3–4), 283–299 (1987). [CrossRef]
  4. Y. H. Lin, Z. L. Tang, Z. T. Zhang, and C. W. Nan, “Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors,” Appl. Phys. Lett.81(6), 996–998 (2002). [CrossRef]
  5. X. D. Lü, W. G. Shu, Q. Fang, Q. M. Yu, and X. Q. Xiong, “Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, Re3+ phosphors,” J. Mater. Sci.42(15), 6240–6245 (2007). [CrossRef]
  6. A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, and D. Morton, “New electron excited light-emitting materials,” J. Vac. Sci. Technol. B12(2), 781–784 (1994). [CrossRef]
  7. P. T. Diallo, P. Boutinaud, R. Mahiou, and J. C. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status. Solidi A160(1), 255–263 (1997). [CrossRef]
  8. D. Haranath, A. F. Khan, and H. Chander, “Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications,” J. Phys. D Appl. Phys.39(23), 4956–4960 (2006). [CrossRef]
  9. E. Pinel, P. Boutinaud, and R. Mahiou, “What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?” J. Alloy. Comp.380(1–2), 225–229 (2004). [CrossRef]
  10. W. Jia, D. Jia, T. Rodriguez, D. R. Evans, R. S. Meltzer, and W. M. Yen, “UV excitation and trapping centers in CaTiO3:Pr3+,” J. Lumin.119–120, 13–18 (2006). [CrossRef]
  11. P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, “About red afterglow in Pr3+ doped titanate perovskites,” J. Phys. D Appl. Phys.42(4), 045106 (2009). [CrossRef]
  12. X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, X. G. Ren, and X. J. Wang, “Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors,” Appl. Phys. Lett.90(15), 151911 (2007). [CrossRef]
  13. W. Y. Jia, W. L. Xu, I. Rivera, A. Perez, and F. Fernandez, “Effects of compositional phase transitions on luminescence of Sr1-xCaxTiO3:Pr3+,” Solid State Commun.126(3), 153–157 (2003). [CrossRef]
  14. X. M. Zhang, J. H. Zhang, X. Zhang, L. Chen, Y. S. Luo, and X. J. Wang, “Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides,” Chem. Phys. Lett.434(4–6), 237–240 (2007). [CrossRef]
  15. S. Y. Yin, D. H. Chen, W. J. Tang, and Y. H. Yuan, “Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci.42(8), 2886–2890 (2007). [CrossRef]
  16. J. F. Tang, X. B. Yu, L. Z. Yang, C. L. Zhou, and X. D. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+,” Mater. Lett.60(3), 326–329 (2006). [CrossRef]
  17. T. Wanjun and C. Donghua, “Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route,” Mater. Res. Bull.44(4), 836–839 (2009). [CrossRef]
  18. T. Wanjun and C. Donghua, “Photoluminescent properties of (Ca,Zn)TiO3:Pr3+ particles synthesized by the peroxide-based route method,” J. Am. Ceram. Soc.90(10), 3156–3159 (2007). [CrossRef]
  19. E. H. Otal, A. E. Maegli, N. Vogel-Schauble, B. Walfort, H. Hagemann, S. Yoon, A. Zeller, and A. Weidenkaff, “The influence of defects formed by Ca excess and thermal post-treatments on the persistent luminescence of CaTiO3:Pr3+,” Opt. Mater. Express2(4), 405–412 (2012). [CrossRef]
  20. S. G. Ebbinghaus, H. P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties,” Prog. Solid State Chem.37(2–3), 173–205 (2009). [CrossRef]
  21. M. H. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, “Anion order in perovskite oxynitrides,” Nat. Chem.3(1), 47–52 (2011). [CrossRef] [PubMed]
  22. A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1-xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” J. Solid State Chem.184(4), 929–936 (2011). [CrossRef]
  23. A. Fuertes, “Synthesis and properties of functional oxynitrides—from photocatalysts to CMR materials,” Dalton Trans.39(26), 5942–5948 (2010). [CrossRef] [PubMed]
  24. J. Rodríguez-Carvajal, “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B192(1–2), 55–69 (1993). [CrossRef]
  25. A. R. Stokes and A. J. C. Wilson, “The diffraction of x-rays by distorted crystal aggregates,” Proc. Phys. Soc.56(3), 174–181 (1944). [CrossRef]
  26. P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3,” J. Appl. Cryst.20(2), 79–83 (1987). [CrossRef]
  27. T. Ressler, “WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.5(2), 118–122 (1998). [CrossRef] [PubMed]
  28. J. A. Bearden and A. F. Burr, “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys.39(1), 125–142 (1967). [CrossRef]
  29. H. Modrow, “Tuning nanoparticle properties—the x-ray absorption spectroscopic point of view,” Appl. Spectrosc. Rev.39(2), 183–290 (2004). [CrossRef]
  30. T. Yamamoto, T. Mizoguchi, and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti-k edge,” Phys. Rev. B71(24), 245113 (2005). [CrossRef]
  31. V. Luca, S. Djajanti, and R. F. Howe, “Structural and electronic properties of sol-gel titanium oxides studied by x-ray absorption spectroscopy,” J. Phys. Chem. B102(52), 10650–10657 (1998). [CrossRef]
  32. R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, and S. V. Urazhdin, “Pre-edge fine structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens. Matter10(42), 9561–9580 (1998). [CrossRef]
  33. A. I. Frenkel, D. Ehre, V. Lyahovitskaya, L. Kanner, E. Wachtel, and I. Lubomirsky, “Origin of polarity in amorphous SrTiO3.,” Phys. Rev. Lett.99(21), 215502 (2007). [CrossRef] [PubMed]
  34. T. Hirata, K. Ishioka, and M. Kitajima, “Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1-xMxTiO3 (M= Ca, Mg; 0 ≤x≤ 1),” J. Solid State Chem.124(2), 353–359 (1996). [CrossRef]
  35. H. Zheng, H. Bagshaw, G. D. C. Csete de Györgyfalva, I. M. Reaney, R. Ubic, and J. Yarwood, “Raman spectroscopy and microwave properties of CaTiO3-based ceramics,” J. Appl. Phys.94(5), 2948–2956 (2003). [CrossRef]
  36. V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo, “Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders,” Solid State Sci.10(8), 1056–1061 (2008). [CrossRef]
  37. U. Balachandran and N. G. Eror, “Laser-induced Raman-scattering in calcium titanate,” Solid State Commun.44(6), 815–818 (1982). [CrossRef]
  38. M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, “Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model,” Phys. Rev. B Condens. Matter47(5), 2473–2479 (1993). [CrossRef] [PubMed]
  39. A. Bussmann-Holder, A. R. Bishop, and G. Benedek, “Quasiharmonic periodic traveling-wave solutions in anharmonic potentials,” Phys. Rev. B53(17), 11521–11530 (1996). [CrossRef]
  40. E. A. Stern, “Character of order-disorder and displacive components in barium titanate,” Phys. Rev. Lett.93(3), 037601 (2004). [CrossRef] [PubMed]
  41. P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3:Pr3+,” J. Lumin.111(1–2), 69–80 (2005). [CrossRef]
  42. K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of taon with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bull. Chem. Soc. Jpn.81(8), 927–937 (2008). [CrossRef]
  43. V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” J. Phys. Chem. C113(34), 15110–15123 (2009). [CrossRef]
  44. A. Zhu, J. Wang, D. Zhao, and Y. Du, “Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations,” Physica B406(13), 2697–2702 (2011). [CrossRef]
  45. N. J. Cockroft and J. C. Wright, “Local- and distant-charge compensation of Eu3+ ions in defect centers of SrTiO3,” Phys. Rev. B45(17), 9642–9655 (1992). [CrossRef]
  46. R. Fujiwara, H. Sano, M. Shimizu, and M. Kuwabara, “Quantitative analysis of uv excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting,” J. Lumin.129(3), 231–237 (2009). [CrossRef]
  47. X. M. Zhang, C. Y. Cao, C. H. Zhang, L. Chen, J. H. Jia, and X. J. Wang, “Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2,” Physica B406(20), 3891–3895 (2011). [CrossRef]
  48. X. M. Zhang, C. Y. Cao, C. H. Zhang, S. Y. Xie, G. W. Xu, J. H. Zhang, and X. J. Wang, “Photoluminescence and energy storage traps in CatiO3:Pr3+,” Mater. Res. Bull.45(12), 1832–1836 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited