OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 284–294

Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires

John Canning, Hadrien Weil, Masood Naqshbandi, Kevin Cook, and Matthieu Lancry  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 2, pp. 284-294 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



UV laser irradiation (λ = 193 nm), below and above damage thresholds, is used to both alter and pattern the surface properties of borosilicate slides to tune and control the contact angle of a water drop over the surface. Large variation exceeding 25° using laser processing alone, spanning across both sides of the original contact angle of the surface, is reported. An asymmetric contact angle distribution, giving rise to an analogous ellipsoidal-like drop caplet, is shown to improve convective self-assembly of silica nanoparticles into straighter optical microwires.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(240.6700) Optics at surfaces : Surfaces
(310.3840) Thin films : Materials and process characterization
(350.3390) Other areas of optics : Laser materials processing
(350.3450) Other areas of optics : Laser-induced chemistry
(350.3850) Other areas of optics : Materials processing
(350.6670) Other areas of optics : Surface photochemistry
(130.2755) Integrated optics : Glass waveguides
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Laser Materials Processing

Original Manuscript: November 1, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: December 14, 2012
Published: January 23, 2013

Virtual Issues
January 31, 2013 Spotlight on Optics

John Canning, Hadrien Weil, Masood Naqshbandi, Kevin Cook, and Matthieu Lancry, "Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires," Opt. Mater. Express 3, 284-294 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388(1), 47–54 (2007). [CrossRef] [PubMed]
  2. X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. 47(3-4), 49–121 (2004). [CrossRef]
  3. M. Naqshbandi, J. Canning, B. C. Gibson, M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nat. Commun. 3, 1188 (2012), doi:. [CrossRef]
  4. M. Naqshbandi, J. Canning, A. Lau, and M. J. Crossley, “Controlled fabrication of macroscopic mesostructured silica spheres for potential diagnostics and sensing applications,” in the Int. Quantum Electronics Conf. (IQEC)/Conf. on Lasers & Electro-Optics (CLEO) Pacific Rim (IQEC/CLEO-Pacific Rim 2011), Sydney, Australia (2011).
  5. A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, “Superomniphobic magnetic microtextures with remote wetting control,” J. Am. Chem. Soc. 134(31), 12916–12919 (2012). [CrossRef] [PubMed]
  6. M. Naqshbandi, J. Canning, and M. J. Crossley, “Self-assembled silica microwire: a new platform for optical sensing,” in OSA Congress, Optical Sensors, Monterey, California, USA (2012), paper Stu4F.
  7. I. A. Larmour, S. E. J. Bell, and G. C. Saunders, “Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition,” Angew. Chem. 119(10), 1740–1742 (2007). [CrossRef]
  8. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests,” Nano Lett. 3(12), 1701–1705 (2003). [CrossRef]
  9. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012). [CrossRef] [PubMed]
  10. N. Amin, A. Y. Cheah, and I. Ahmad, “Effect of plasma cleaning process in the wettability of flip chip PBGA substrate of integrated circuit packages,” J. Appl. Sci. 10(9), 772–776 (2010). [CrossRef]
  11. D. Triantafyllidis, L. Li, and F. H. Stott, “The effects of laser-induced modification of surface roughness of Al2O3-based ceramics on fluid contact angle,” Mater. Sci. Eng. A 390(1-2), 271–277 (2005). [CrossRef]
  12. C. Sun, X. W. Zhao, Y. H. Han, and Z. Z. Gu, “Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment,” Thin Solid Films 516(12), 4059–4063 (2008). [CrossRef]
  13. J. Canning, I. Petermann, and K. Cook, “Surface treatment of silicate based glass: base Piranha treatment versus 193nm laser processing,” Proc. SPIE 851, 83512N (2012). [CrossRef]
  14. A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010). [CrossRef] [PubMed]
  15. Y.-W. Chen and H.-P. Cheng, “Interaction between water and defective silica surfaces,” J. Chem. Phys. 134(11), 114703 (2011). [CrossRef] [PubMed]
  16. E. F. Voronin, E. M. Pakhlov, and A. A. Chuiko, “Effect of dehydration of a silica surface on chemisorption of methanol,” J. Appl. Spectrosc. 64(3), 315–318 (1997) (and refs therein). [CrossRef]
  17. R. W. van Gemert and F. Petrus Cuperus, “Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation,” J. Membr. Sci. 105(3), 287–291 (1995). [CrossRef]
  18. J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010). [CrossRef] [PubMed]
  19. S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” ArXiv (2001), ArXiv:cond-mat/0105149x2 [cond-mat.soft].
  20. P. J. Bruna and F. Grein, “MRD-CI study on the isomers SiOH and HSiO 1. Relative stability and electronic spectra,” Mol. Phys. 63(2), 329–349 (1988). [CrossRef]
  21. Y. Yamaguchi and H. F. Schaefer, “The SiOH+- HSiO+ system: a high level ab initio quantum mechanical study,” J. Chem. Phys. 102(13), 5327–5334 (1995). [CrossRef]
  22. C. L. Darling and H. B. Schlegel, “Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory,” J. Phys. Chem. 97(31), 8207–8211 (1993). [CrossRef]
  23. P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George, “FTIR studies of H2O and D2O decomposition on porous silicon surfaces,” Surf. Sci. 245(3), 360–372 (1991). [CrossRef]
  24. M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, “The adsorption and reactions of water on Si(100)-2 x 1 and Si(111)-7 x7 surfaces,” Surf. Sci. 351(1-3), 87–102 (1996). [CrossRef]
  25. A. Gray-Weale and J. K. Beattie, “An explanation for the charge on water’s surface,” Phys. Chem. Chem. Phys. 11(46), 10994–11005 (2009). [CrossRef] [PubMed]
  26. R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, “Comment on ‘An explanation for the charge on water’s surface’ by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994,” Phys. Chem. Chem. Phys. 12(42), 14362–14363 (2010). [CrossRef] [PubMed]
  27. A. Gray-Weale and J. K. Beattie, “Reply to the ‘Comment on “An explanation for the charge on water’s surface”’ by R. Vácha, D. Horinek, R. Buchner, B. Winter, and P. Jungwirth, Phys. Chem, Chem. Phys., 12, 14362-14363 (2010),” Phys. Chem. Chem. Phys. 12(42), 14364–14366 (2010). [CrossRef]
  28. D. R. Halfpenny, D. M. Kane, R. N. Lamb, and B. Gong, “Surface modification of silica with ultraviolet laser radiation,” Appl. Phys., A Mater. Sci. Process. 71, 147–151 (2000).
  29. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965). [CrossRef]
  30. M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organisation in glass driven by ultrashort light pulses,” Appl. Phys. (Berl.) 101, 053120 (2012).
  31. J. Canning, M. Lancry, K. Cook, B. Poumellec, “Zeosil formation by femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (online) (Optical Society of America, 2012), paper BW1D.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited