OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 295–306

Crystallinity improvement of ZnO thin film by hierarchical thermal annealing

Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Po-Ching Chou, and Shao-Ying Ting  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 2, pp. 295-306 (2013)
http://dx.doi.org/10.1364/OME.3.000295


View Full Text Article

Enhanced HTML    Acrobat PDF (3348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Molecular beam epitaxy (MBE) was adopted to grow zinc oxide (ZnO) film on sapphire substrate and improve the quality of ZnO thin film epitaxy using a magnesium oxide (MgO) buffer layer and a two-segment temperature scheme for ZnO thin film growth. The influence of thermal annealing of different layers on the optical and crystalline features, stress expression, as well as surface morphology of ZnO thin film was examined. SEM images showed smooth surfaces were formed, and these surfaces allowed the low-temperature ZnO buffer layer to have better epitaxial environment at the very beginning. X-ray diffraction (XRD) analysis revealed that a lower thermal annealing temperature more effectively released the stress of materials. The thermally annealed MgO buffer layer had 26% less strain than the purely thermally annealed, high-temperature-grown ZnO (HT-ZnO), and 33% less strain than the unannealed samples. Atomic force microscopy results showed that the root-mean-square of surface roughness of thermally annealed MgO was 0.255 nm, which was 80% lower than that of thermally annealed HT-ZnO (1.241 nm). Photoluminescence measurement showed that the thermally annealed MgO buffer layer had the highest strength for near-band-edge emission because of improved crystalline quality. HRTEM results showed that the stress caused by the mismatch between the sapphire lattice was effectively released because the MgO buffer layer was annealed at a high temperature. The surface of the MgO buffer layer became smooth and the stress mismatching with the ZnO lattice did not obviously extend upwards. When MBE was used to grow ZnO thin film, a lower thermal annealing temperature for the MgO buffer layer more effectively controlled stress accumulation and produced high-quality ZnO thin film.

© 2013 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.5293) Materials : Photonic bandgap materials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: January 7, 2013
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 21, 2013
Published: January 23, 2013

Citation
Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Po-Ching Chou, and Shao-Ying Ting, "Crystallinity improvement of ZnO thin film by hierarchical thermal annealing," Opt. Mater. Express 3, 295-306 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-2-295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zhu, S. Gu, S. Zhu, S. Huang, R. Gu, J. Ye, and Y. Zheng, “Optimization study of metal-organic chemical vapor deposition of ZnO on sapphire substrate,” J. Cryst. Growth349(1), 6–11 (2012). [CrossRef]
  2. K. Samanta, A. K. Arora, S. Hussain, S. Chakravarty, and R. S. Katiyar, “Effect of oxygen partial pressure and annealing on nanocrystalline p-type ZnO-Sb,” Curr. Appl. Phys.12(5), 1381–1385 (2012). [CrossRef]
  3. J. S. Oyola, J. M. Castro, and G. Gordillo, “ZnO films grown using a novel procedure based on the reactive evaporation method,” Sol. Energy Mater. Sol. Cells102, 137–141 (2012). [CrossRef]
  4. M. I. Medina-Montes, H. Arizpe-Cha’vez, L. A. Baldenegro-Pe’rez, M. A. Quevedo-Lo’pez, and R. Rami’rez-Bon, “RF power effect on the properties of sputtered zno films for channel layer applications in thin-film transistors,” J. Electron. Mater.41(7), 1962–1969 (2012). [CrossRef]
  5. C. R. Hall, L. V. Dao, K. Koike, S. Sasa, H. H. Tan, M. Inoue, M. Yano, C. Jagadish, and J. A. Davis, “Using graded barriers to control the optical properties of ZnO/Zn0.7Mg0.3O quantum wells with an intrinsic internal electric field,” Appl. Phys. Lett.96(19), 193117 (2010). [CrossRef]
  6. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett.91(9), 091110 (2007). [CrossRef]
  7. H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum well light-emitting diodes in the green spectral regimes,” IET Optoelectron.3(6), 283–295 (2009). [CrossRef]
  8. H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  9. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett.97(11), 111105 (2010). [CrossRef]
  10. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett.98(17), 171111 (2011). [CrossRef]
  11. Y. Taniyasu and M. Kasu, “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices,” Appl. Phys. Lett.99(25), 251112 (2011). [CrossRef]
  12. E. Francesco Pecora, W. Zhang, A. Yu. Nikiforov, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. Dal Negro, and T. D. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100, 061111 (2012). [CrossRef]
  13. G. Liu, J. Zhang, X. H. Li, G. S. Huang, T. Paskova, K. R. Evans, H. Zhao, and N. Tansu, “Metalorganic vapor phase epitaxy and characterizations of nearly-lattice-matched AlInN alloys on GaN/sapphire templates and free-standing GaN substrates,” J. Cryst. Growth340(1), 66–73 (2012). [CrossRef]
  14. R. B. Chung, F. Wu, R. Shivaraman, S. Keller, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Growth study and ipurity characterization of AlxIn1−xN grown by metal organic chemical vapor deposition,” J. Cryst. Growth324(1), 163–167 (2011). [CrossRef]
  15. J. G. Kim, S. K. Han, S. M. Yang, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, Y. E. Ihm, D. Kim, J. S. Park, H. J. Lee, and T. Yao, “Effects of low temperature ZnO and MgO buffer thicknesses on properties of ZnO films grown on (0001) Al2O3 substrates by plasma-assisted molecular beam epitaxy,” Thin Solid Films519(1), 223–227 (2010). [CrossRef]
  16. Y. J. Chen, Y. Y. Shih, C. H. Ho, J. H. Du, and Y. P. Fu, “Effect of temperature on lateral growth of ZnO grains grown by MOCVD,” Ceram. Int.36(1), 69–73 (2010). [CrossRef]
  17. H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, L. H. Chen, and R. C. C. Tsiang, “Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy,” Opt. Mater. Express3(2), 237–247 (2013). [CrossRef]
  18. X. Q. Wang, H. P. Sun, and X. Q. Pan, “Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy,” Appl. Phys. Lett.97(15), 151908 (2010). [CrossRef]
  19. B. Pécz, A. El-Shaer, A. Bakin, A.-C. Mofor, A. Waag, and J. Stoemenos, “Structural characterization of ZnO films grown by molecular beam epitaxy on sapphire with MgO buffer,” J. Appl. Phys.100(10), 103506 (2006). [CrossRef]
  20. B. M. Ataev, W. V. Lundin, V. V. Mamedov, A. M. Bagamadova, and E. E. Zavarin, “Low-pressure chemical vapour deposition growth of high-quality ZnO films on epi-GaN/α-Al2O3,” J. Phys. Condens. Matter13(9), L211–L214 (2001). [CrossRef]
  21. J. P. Cui, Y. Duan, X. F. Wang, and Y. P. Zeng, “Strain status in ZnO film on sapphire substrate with a GaN buffer layer grown by metal-source vapor phase epitaxy,” Microelectron. J.39(12), 1542–1544 (2008). [CrossRef]
  22. S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012). [CrossRef]
  23. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer,” Appl. Phys. Lett.76(5), 559–561 (2000). [CrossRef]
  24. Y. Chen, S. K. Hong, H. J. Ko, V. Kirshner, H. Wenisch, T. Yao, K. Inaba, and Y. Segawa, “Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch,” Appl. Phys. Lett.78(21), 3352–3354 (2001). [CrossRef]
  25. A. Bakin, J. Kioseoglou, B. Pecz, A. El-Shaer, A.-C. Mofor, J. Stoemenos, and A. Waag, “Misfit reduction by a spinel layer formed during the epitaxial growth of ZnO on sapphire using a MgO buffer layer,” J. Cryst. Growth308(2), 314–320 (2007). [CrossRef]
  26. H. Kato, K. Miyamoto, M. Sano, and T. Yao, “Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness,” Appl. Phys. Lett.84(22), 4562–4564 (2004). [CrossRef]
  27. Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci.241(3-4), 303–308 (2005). [CrossRef]
  28. K. S. Kim, H. W. Kim, and N. H. Kim, “Structural characterization of ZnO films grown on SiO2 by the RF magnetron sputtering,” Physica B334(3-4), 343–346 (2003). [CrossRef]
  29. A. Setiawan, H. J. Ko, S. K. Hong, Y. Chen, and T. Yao, “Study on MgO buffer in ZnO layers grown by plasma-assisted molecular beam epitaxy on Al2O3 (0001),” Thin Solid Films445(2), 213–218 (2003). [CrossRef]
  30. S. Fuke, H. Teshigawara, K. Kuwahara, Y. Takano, T. Ito, M. Yanagihara, and K. Ohtsuka, “Influences of initial nitridation and buffer layer deposition on the morphology of a (0001) GaN layer grown on sapphire substrates,” J. Appl. Phys.83(2), 764 (1998). [CrossRef]
  31. K. H. Bang, D. K. Hwang, and J. M. Myoung, “Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering,” Appl. Surf. Sci.207(1-4), 359–364 (2003). [CrossRef]
  32. A. Setiawan, H. J. Ko, and T. Yao, “Effects of annealing of MgO buffer layer on structural quality of ZnO layers grown by P-MBE on c-sapphire,” Mater. Sci. Semicond. Process.6(5-6), 371–374 (2003). [CrossRef]
  33. P. Singh, A. Kumar, Deepak, and D. Kaur, “ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapour deposition,” Opt. Mater.30(8), 1316–1322 (2008). [CrossRef]
  34. W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films353(1-2), 12–15 (1999). [CrossRef]
  35. J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” J. Cryst. Growth243(1), 151–156 (2002). [CrossRef]
  36. B. H. Kong, D. C. Kim, S. K. Mohanta, and H. K. Cho, “Influence of VI/II ratios on the growth of ZnO thin films on sapphire substrate by low temperature MOCVD,” Thin Solid Films518(11), 2975–2979 (2010). [CrossRef]
  37. D. Sahu, B. S. Acharya, and A. K. Panda, “Role of Ag ions on the structural evolution of nano ZnO clusters synthesized through ultrasonication and their optical properties,” Ultrason. Sonochem.18(2), 601–607 (2011). [CrossRef] [PubMed]
  38. R. Hong, J. Huang, H. He, Z. Fan, and J. Shao, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci.242(3-4), 346–352 (2005). [CrossRef]
  39. K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S.-J. Park, and J.-H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering,” J. Appl. Phys.87(7), 3573–3575 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited