OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 309–317

Solution-processing of thick chalcogenide-chalcogenide and metal-chalcogenide structures by spin-coating and multilayer lamination

Yunlai Zha and Craig B. Arnold  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 2, pp. 309-317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2958 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a new technique for fabricating thick (>10µm) chalcogenide multilayer structures. Films of arbitrary thicknesses are readily achieved through spin-coating, lamination and baking. For homogeneous systems, layer interfaces can be effectively removed by annealing above Tg. Alternatively, heterogeneous multilayer films can be realized by introducing layers of different chalcogenide materials or metals. In particular, photo-induced Ag dissolution is verified in a laminated multilayer film, with a refractive index increase greater than 0.2. The work presented here has great implications for chalcogenide deposition with potential applications in data storage, IR detection and IR beam combining.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Glass and Other Amorphous Materials

Original Manuscript: October 22, 2012
Revised Manuscript: January 5, 2013
Manuscript Accepted: January 27, 2013
Published: January 30, 2013

Yunlai Zha and Craig B. Arnold, "Solution-processing of thick chalcogenide-chalcogenide and metal-chalcogenide structures by spin-coating and multilayer lamination," Opt. Mater. Express 3, 309-317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids249(2-3), 150–159 (1999). [CrossRef]
  2. A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photoinduced structural and physicochemical changes in amorphous-chalcogenide semiconductors,” Philos. Mag. B52(3), 347–362 (1985). [CrossRef]
  3. K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990). [CrossRef] [PubMed]
  4. S. Song, S. S. Howard, Z. J. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett.89(4), 041115 (2006). [CrossRef]
  5. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol.2(5), 607–613 (1984). [CrossRef]
  6. H. Zogg and M. Arnold, “Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors,” Opto-Electron. Rev.14(1), 33–36 (2006). [CrossRef]
  7. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  8. X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett.35(19), 3228–3230 (2010). [CrossRef] [PubMed]
  9. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010). [CrossRef] [PubMed]
  10. V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films,” J. Non-Cryst. Solids227-230, 739–742 (1998). [CrossRef]
  11. F. Kyriazis and S. N. Yannopoulos, “Colossal photostructural changes in chalcogenide glasses: athermal photoinduced polymerization in AsxS100-x bulk glasses revealed by near-bandgap Raman scattering,” Appl. Phys. Lett.94(10), 101901 (2009). [CrossRef]
  12. A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys.40(5), 625–684 (1991). [CrossRef]
  13. A. G. Steventon, “Microfilaments in amorphous-chalcogenide memory devices,” J. Phys. D Appl. Phys.8(9), L120–L122 (1975). [CrossRef]
  14. L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14(5), 1323–1334 (2008). [CrossRef]
  15. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29(7), 748–750 (2004). [CrossRef] [PubMed]
  16. J. Teteris, “Holographic recording in amorphous chalcogenide semiconductor thin films,” J. Optoelectron. Adv. Mater.4, 687–697 (2002).
  17. H. R. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids354(12-13), 1100–1111 (2008). [CrossRef]
  18. H.-Y. Tsoi, J. P. Ellul, M. I. King, J. J. White, and W. C. Bradley, “A deep-depletion CCD imager for soft-X-ray, visible, and near-infrared sensing,” IEEE Trans. Electron. Dev.32(8), 1525–1530 (1985). [CrossRef]
  19. P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin, and A. M. Gué, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng.16(1), 113–121 (2006). [CrossRef]
  20. Z. Y. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nat. Mater.2(6), 413–418 (2003). [CrossRef] [PubMed]
  21. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010). [CrossRef] [PubMed]
  22. Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express2(12), 1723–1732 (2012). [CrossRef]
  23. V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater.6, 875–882 (2004).
  24. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed-laser deposition of Ga-La-S chalcogenide glass thin-film optical wave-guides,” Appl. Phys. Lett.63(12), 1601–1603 (1993). [CrossRef]
  25. T. Wagner and P. J. S. Ewen, “Photo-induced dissolution effect in Ag/AS33S67 multilayer structures and its potential application,” J. Non-Cryst. Solids266-269, 979–984 (2000). [CrossRef]
  26. G. C. Chern and I. Lauks, “Spin-coated amorphous-chalcogenide films,” J. Appl. Phys.53(10), 6979–6982 (1982). [CrossRef]
  27. E. Skordeva, K. Christova, M. Tzolov, and Z. Dimitrova, “Photoinduced changes of mechanical stress in amorphous Ge-As-S(Se) film/Si substrate systems,” Appl. Phys., A Mater. Sci. Process.66(1), 103–107 (1998). [CrossRef]
  28. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull.29(11), 829–832 (2004). [CrossRef]
  29. G. Atwood and R. Bez, “Current status of Chalcogenide phase change memory,” in Device Research Conference (2005), pp. 29–33.
  30. K. A. Campbell and C. M. Anderson, “Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers,” Microelectron. J.38(1), 52–59 (2007). [CrossRef]
  31. Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process.84(1-2), 21–25 (2006). [CrossRef]
  32. T. Wagner, M. Frumar, S. O. Kasap, M. Vlcek, and M. Vlcek, “New Ag-containing amorphous chalcogenide thin films—prospective materials for rewriteable optical memories,” J. Optoelectron. Adv. Mater.3, 227–232 (2001).
  33. M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, and T. L. Alford, “Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory,” Phys Status Solidi A207(3), 621–626 (2010). [CrossRef]
  34. S. Kokenyesi, “Amorphous chalcogenide nano-multilayers: research and development,” J. Optoelectron. Adv. Mater.8, 2093–2096 (2006).
  35. S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, and V. Volterra, “Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films,” Thin Solid Films261(1-2), 263–265 (1995). [CrossRef]
  36. Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids (submitted).
  37. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010). [CrossRef] [PubMed]
  38. S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids355(45-47), 2272–2278 (2009). [CrossRef]
  39. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010). [CrossRef] [PubMed]
  40. M. Frumar and T. Wagner, “Ag doped chalcogenide glasses and their applications,” Curr. Opin. Solid State Mater. Sci.7(2), 117–126 (2003). [CrossRef]
  41. T. Wágner, A. Mackova, V. Perina, E. Rauhala, A. Seppala, S. O. Kasap, M. Frumar, M. Vlcek, and M. Vlcek, “The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products,” J. Non-Cryst. Solids299-302, 1028–1032 (2002). [CrossRef]
  42. K. A. Campell and J. T. Moore, “Silver-selenide/chalcogenide glass stack for resistence variable memory,” US 2003/0155589 A1 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited