OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 3 — Mar. 1, 2013
  • pp: 318–328

Fabrication of extruded fluoroindate optical fibers

Jiafang Bei, Tanya M. Monro, Alexander Hemming, and Heike Ebendorff-Heidepriem  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 3, pp. 318-328 (2013)
http://dx.doi.org/10.1364/OME.3.000318


View Full Text Article

Acrobat PDF (1618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluoroindate glasses are attractive materials for the fabrication of mid-infrared transmitting fibers with extended spectral range. Preparation of fluoroindate glasses under different melting conditions and preform fabrication using the billet extrusion technique were investigated in this study. Experimental results showed that the fluorination of the raw materials using ammonium bifluoride reduced OH content and oxide impurities, and enhanced the crystallization stability of the glasses. In addition, a shift of the IR absorption edge to longer wavelength was observed by using ammonium bifluoride. Casting and extrusion methods were compared for application to preform fabrication. In this work, the fiber with the lowest loss (~2 dB/m at 1.55 μm) was obtained using preform extrusion at 322 °C. The significantly reduced loss of the fiber made from the extruded preform compared to the fiber made using a cast preform is attributed to the suppression of scattering centers and the better surface quality of extruded rods compared with the cast rod.

© 2013 OSA

OCIS Codes
(160.2290) Materials : Fiber materials
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: December 18, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: January 31, 2013
Published: February 1, 2013

Citation
Jiafang Bei, Tanya M. Monro, Alexander Hemming, and Heike Ebendorff-Heidepriem, "Fabrication of extruded fluoroindate optical fibers," Opt. Mater. Express 3, 318-328 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-3-318


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Almeida, “Fluoride glasses,” in Handbook on the Physics and Chemistry of Rare Earths, A. G. Karl, Jr. and E. LeRoy, eds. (Elsevier, 1991), pp. 287–346.
  2. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010). [CrossRef]
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004). [CrossRef]
  4. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  5. P. McNamara, D. G. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. H. Mair, “A large core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355(28-30), 1461–1467 (2009). [CrossRef]
  6. J. M. Reau and M. Poulain, “Ionic conductivity in fluorine-containing glasses,” Mater. Chem. Phys.23(1-2), 189–209 (1989). [CrossRef]
  7. D. Szebesta, S. T. Davey, J. R. Williams, and M. W. Moore, “OH absorption in the low loss window of ZBLAN(P) glass fiber,” J. Non-Cryst. Solids161, 18–22 (1993). [CrossRef]
  8. L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter50(22), 16219–16223 (1994). [CrossRef] [PubMed]
  9. A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araujo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys.87(9), 4274–4278 (2000). [CrossRef]
  10. N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer assisted frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys.91(3), 1272–1276 (2002). [CrossRef]
  11. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997). [CrossRef]
  12. K. Itoh, H. Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, and H. Toratani, “Pr3+ doped InF3/GaF3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm,” J. Non-Cryst. Solids256-257, 1–5 (1999). [CrossRef]
  13. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U.S. Patent No. 5,774,620 (dated Jun. 30, 1998).
  14. Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003). [CrossRef]
  15. M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009). [CrossRef]
  16. G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001). [CrossRef]
  17. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow druing extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012). [CrossRef]
  18. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971). [CrossRef]
  19. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007). [CrossRef]
  20. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007). [CrossRef] [PubMed]
  21. H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008). [CrossRef] [PubMed]
  22. A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992). [CrossRef]
  23. S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984). [CrossRef]
  24. S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988). [CrossRef]
  25. D. C. Tran and C. Fisher, “SF6 Process for dehydration of fluoride glasses,” U.S. Patent No. 4,539,032 (dated Sep. 3, 1985).
  26. H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986). [CrossRef]
  27. P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991). [CrossRef]
  28. A. Zhang, A. Lin, J. S. Wang, and J. Toulouse, “Multistage etching process for microscopically smooth tellurite glass surfaces in optical fibers,” J. Vac. Sci. Technol. B28(4), 682–686 (2010). [CrossRef]
  29. Y. D. West, E. R. Taylor, R. C. Moore, and D. N. Payne, “Chemical etching of AlF3-based glasses,” J. Non-Cryst. Solids256-257, 200–206 (1999). [CrossRef]
  30. P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH-absorption in fluoride glass infra-red fibers,” Electron. Lett.20(14), 607–608 (1984). [CrossRef]
  31. M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gboji, K. H. Chung, and M. Boulos, “Influence of processing conditions on IR edge absorption in fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull.16(8), 943–947 (1981). [CrossRef]
  32. B. Bendow, “Transparency of bulk halide glasses,” in Fluoride Glass Fiber Optics, I. D. Aggarwal and G. Lu, eds. (Academic Press, 1991), pp. 85–137.
  33. M. G. Drexhage, “Heavy metal fluoride glasses,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic Press, 1985), Vol. 26: Glass IV, pp. 228–229.
  34. H. Yinnon and D. R. Uhlmann, “Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory,” J. Non-Cryst. Solids54(3), 253–275 (1983). [CrossRef]
  35. N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, “Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry,” J. Am. Ceram. Soc.66(4), 233–238 (1983). [CrossRef]
  36. S. Mitachi and P. A. Tick, “Oxygen effects on fluoride glass stability,” Mater. Sci. Forum32-33, 197–202 (1991). [CrossRef]
  37. K. Fujiura, Y. Nishida, K. Kobayashi, and S. Takahashi, “Oxygen doping effects on thermal properties of ZrF4-BaF2 glass synthesized by plasma-enhanced chemical vapour deposition,” Jpn. J. Appl. Phys.30(Part 2, No. 12B), L2113–L2115 (1991). [CrossRef]
  38. R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983). [CrossRef]
  39. International Organisation for Standardisation, “Surface Roughness - Terminology - Part 1: Surface and Its Parameters,” ISO 4287–1 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited