OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 3 — Mar. 1, 2013
  • pp: 383–389

Plasmon-induced enhancement of intra-ensemble FRET in quantum dots on wrinkled thin films

C. G. L. Ferri, R. H. Inman, B. Rich, A. Gopinathan, M. Khine, and S. Ghosh  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 3, pp. 383-389 (2013)
http://dx.doi.org/10.1364/OME.3.000383


View Full Text Article

Enhanced HTML    Acrobat PDF (1465 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate increased intra-ensemble energy transfer (ET) in monodispersed semiconducting quantum dots (QDs), mediated by localized plasmons on metallic thin films with nano-scale wrinkles. The increased ET results in a net spectral red-shift, up to three-fold increase in emission intensity, and a faster radiative recombination rate of the ensemble. The extent of the red-shift is dependent on QD size, and is largest for the QDs where the absorption spectrum overlaps the plasmonic resonance of the film. This effect has a uniform, macroscopic manifestation and may provide an inexpensive option of improving performance of QD based photovoltaic devices.

© 2013 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: October 31, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 16, 2013
Published: February 6, 2013

Citation
C. G. L. Ferri, R. H. Inman, B. Rich, A. Gopinathan, M. Khine, and S. Ghosh, "Plasmon-induced enhancement of intra-ensemble FRET in quantum dots on wrinkled thin films," Opt. Mater. Express 3, 383-389 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-3-383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001). [CrossRef] [PubMed]
  2. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89(11), 117401 (2002). [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  4. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008). [CrossRef]
  5. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76(12), 125308 (2007). [CrossRef]
  6. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett.89(18), 186802 (2002). [CrossRef] [PubMed]
  7. M. Lunz, A. L. Bradley, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions,” Phys. Rev. B83(11), 115423 (2011). [CrossRef]
  8. M. Lunz, A. L. Bradley, W.-Y. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B81(20), 205316 (2010). [CrossRef]
  9. C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater.21(44), 4472–4476 (2009). [CrossRef]
  10. M. I. Stockman, “Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect,” Phys. Rev. Lett.84(5), 1011–1014 (2000). [CrossRef] [PubMed]
  11. Z. Fang, S. Huang, Y. Lu, A. Pan, F. Lin, and X. Zhu, “Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons,” Phys. Rev. B82(8), 085403 (2010). [CrossRef]
  12. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002). [CrossRef]
  13. A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, “Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys.89(7), 4001–4011 (1988). [CrossRef]
  14. H. Zhao, M. Chaker, and D. Ma, “Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots,” Phys. Chem. Chem. Phys.12(44), 14754–14761 (2010). [CrossRef] [PubMed]
  15. G. V. Shcherbatyuk, R. H. Inman, and S. Ghosh, “Anomalous photo-induced spectral changes in CdSe/ZnS quantum dots,” J. Appl. Phys.110(5), 053518 (2011). [CrossRef]
  16. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett.76(9), 1517–1520 (1996). [CrossRef] [PubMed]
  17. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007). [CrossRef] [PubMed]
  18. H. Szmacinski, K. Ray, and J. R. Lakowicz, “Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer,” J. Biophotonics2(4), 243–252 (2009). [CrossRef] [PubMed]
  19. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infra-red PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010). [CrossRef]
  20. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited