OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 4 — Apr. 1, 2013
  • pp: 439–451

Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount

Thomas W. H. Oates, Babak Dastmalchi, Christian Helgert, Lars Reissmann, Uwe Huebner, Ernst-Bernhard Kley, Marc A. Verschuuren, Iris Bergmair, Thomas Pertsch, Kurt Hingerl, and Karsten Hinrichs  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 4, pp. 439-451 (2013)
http://dx.doi.org/10.1364/OME.3.000439


View Full Text Article

Enhanced HTML    Acrobat PDF (4247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on measurements of optical activity in reflection in the conical mount from two plasmonically resonant nanostructures; a sub-wavelength silver meshed grid and a fishnet metamaterial. The square-centimeter size of the materials, formed by nano-imprint lithography, allows reliable investigation of such materials by plane-wave techniques with minimal focusing. For both materials we observe strong polarization conversion (s- to p-polarization, and vice versa) in generalized ellipsometry measurements. We compared the spectra to analytical predictions using surface plasmon polariton (SPP) theory and find good agreement for the meshed grid. The spectra for the meshed grid are also well modeled using the rigorous coupled wave analysis (RCWA) technique. Simulated results for the more complicated fishnet layer showing qualitative agreement are also presented. We then probe the validity of describing the observations using homogenous parameters such as dichroism and birefringence, by examining the calculated reflection of nominally polarized incident light using simulated and measured Mueller matrices. The results show that the cross-polarization that we observe is primarily related to linear birefringence and dichroism, although circular effects are indeed present.

© 2013 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 29, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 14, 2013
Published: March 1, 2013

Citation
Thomas W. H. Oates, Babak Dastmalchi, Christian Helgert, Lars Reissmann, Uwe Huebner, Ernst-Bernhard Kley, Marc A. Verschuuren, Iris Bergmair, Thomas Pertsch, Kurt Hingerl, and Karsten Hinrichs, "Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount," Opt. Mater. Express 3, 439-451 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-4-439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  2. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  3. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003). [CrossRef] [PubMed]
  4. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007). [CrossRef]
  5. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005). [CrossRef] [PubMed]
  6. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106(18), 185501 (2011). [CrossRef] [PubMed]
  7. M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik (Stuttg.)113(8), 367–371 (2002). [CrossRef]
  8. L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett.492(4-6), 199–213 (2010). [CrossRef]
  9. J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure,” Proc. R. Soc. London63(1), 146–152 (1898). [CrossRef]
  10. K. F. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elekromagnetischen Wellen,” Ann. Phys.368 (23), 621–644 (1920). [CrossRef]
  11. A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun.168(5-6), 457–465 (1999). [CrossRef]
  12. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt.13(2), 024006 (2011). [CrossRef]
  13. Confusingly, a similar related phenomenon, termed internal conical diffraction, describes the refraction of a Gaussian beam in a biaxial transparent crystal into a light cone, which forms a cylindrical beam upon exit into an isotropic medium (seeM. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. Lond.462, 1629–1642 (2006)).
  14. M. Neviere, D. Maystre, and W. R. Hunter, “Use of classical and conical diffraction mountings for XUV gratings,” J. Opt. Soc. Am.68(8), 1106–1113 (1978). [CrossRef]
  15. G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt.37(7), 1227–1232 (1990). [CrossRef]
  16. R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. (Berl.)14(1), 1–20 (1977). [CrossRef]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  18. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004). [CrossRef] [PubMed]
  19. R. Ortuño, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009). [CrossRef]
  20. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt.11(7), 074009 (2009). [CrossRef]
  21. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt.13(1), 013001 (2011). [CrossRef]
  22. H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater.20(4), 529–539 (2010). [CrossRef]
  23. I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22(32), 325301 (2011). [CrossRef] [PubMed]
  24. T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express20(10), 11166–11177 (2012). [CrossRef] [PubMed]
  25. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  26. T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011). [CrossRef]
  27. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University Press, 1962).
  28. M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films313-314, 323–332 (1998). [CrossRef]
  29. R. M. A. Azzam and N. M. Bashara, “Generalized ellipsometry for surfaces with directional preference - application to diffraction gratings,” J. Opt. Soc. Am.62(12), 1521–1523 (1972). [CrossRef]
  30. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  31. M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, F. Bertin, J. Hazart, K. Postava, and B. Drevillon, “Monitoring critical dimensions of bidimensional gratings by spectroscopic ellipsometry and Mueller polarimetry,” Phys. Status Solidi A205, 806–809 (2008).
  32. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983). [CrossRef]
  33. T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19(3), 2014–2028 (2011). [CrossRef] [PubMed]
  34. C. W. Haggans, L. F. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A10(10), 2217–2225 (1993). [CrossRef]
  35. J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter3(32), 6121–6133 (1991). [CrossRef]
  36. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization-differential 4x4 matrix calculus,” J. Opt. Soc. Am.68(12), 1756–1767 (1978). [CrossRef]
  37. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996). [CrossRef]
  38. J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev.87(6), 1359–1399 (1987). [CrossRef]
  39. H. Takechi, O. Arteaga, J. M. Ribo, and H. Watarai, “Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods,” Molecules16(12), 3636–3647 (2011). [CrossRef]
  40. J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality21(Suppl 1), E20–E27 (2009). [CrossRef] [PubMed]
  41. H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag.92(12), 1583–1599 (2012). [CrossRef]
  42. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004). [CrossRef]
  43. J. K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun.277(1), 63–66 (2007). [CrossRef]
  44. R. M. A. Azzam and K. A. Giardina, “Photopolarimeter based on planar grating diffraction,” J. Opt. Soc. Am. A10(6), 1190–1196 (1993). [CrossRef]
  45. C. Detlefs, M. Sanchez del Rio, and C. Mazzoli, “X-ray polarization: general formalism and polarization analysis,” Eur. Phys. J. Spec. Top.208(1), 359–371 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited