OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 4 — Apr. 1, 2013
  • pp: 472–479

Effects of transient dark currents on the buildup dynamics of refractive index changes in photorefractive polymers excited by pulsed voltage

Takafumi Sassa, Takashi Fujihara, Jun-ichi Mamiya, and Masuki Kawamoto  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 4, pp. 472-479 (2013)
http://dx.doi.org/10.1364/OME.3.000472


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the influence of a transient dark current on the buildup dynamics of photorefractive index gratings, which are excited right after the onset of a pulsed voltage, by using low glass-transition temperature photorefractive polymers under a heat-assisted condition. We conclude that the development of photorefractive index gratings is majorly controlled by changes in the transient dark current, through the suppression of a saturated photo-induced space-charge electric field. We also show that this influence can be estimated reasonably well by a simple analysis of the measured transient current traces.

© 2013 OSA

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Photorefractive Materials

History
Original Manuscript: January 2, 2013
Revised Manuscript: February 13, 2013
Manuscript Accepted: February 13, 2013
Published: March 18, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Citation
Takafumi Sassa, Takashi Fujihara, Jun-ichi Mamiya, and Masuki Kawamoto, "Effects of transient dark currents on the buildup dynamics of refractive index changes in photorefractive polymers excited by pulsed voltage," Opt. Mater. Express 3, 472-479 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-4-472


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Köber, M. Salvador, and K. Meerholz, “Organic photorefractive materials and applications,” Adv. Mater.23(41), 4725–4763 (2011). [CrossRef]
  2. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008). [CrossRef] [PubMed]
  3. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express17(14), 11834–11849 (2009). [CrossRef] [PubMed]
  4. J. A. Quintana, J. M. Villalvilla, P. G. Boj, L. Martín-Gomis, J. Ortiz, F. Fernández-Lázaro, Á. Sastre-Santos, and M. A. D. García, “Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping,” Adv. Funct. Mater.19(3), 428–437 (2009). [CrossRef]
  5. W. Lv, Z. Chen, and Q. Gong, “Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer,” J. Opt. A, Pure Appl. Opt.9(5), 486–489 (2007). [CrossRef]
  6. H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011). [CrossRef] [PubMed]
  7. O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” ChemPhysChem4(7), 732–744 (2003). [CrossRef] [PubMed]
  8. J.-W. Oh, W.-J. Joo, I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B113(6), 1592–1597 (2009). [CrossRef] [PubMed]
  9. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci.27(1), 585–623 (1997). [CrossRef]
  10. J.-C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008). [CrossRef]
  11. J. A. Quintana, P. G. Boj, J. M. Villalvilla, M. A. Díaz-García, J. Ortiz, L. Martín-Gomis, F. Fernández-Lázaro, and Á. Sastre-Santos, “Determination of glass transition temperature of photorefractive polymer composites from photoconductivity measurements,” Appl. Phys. Lett.92(4), 041101 (2008). [CrossRef]
  12. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004). [CrossRef] [PubMed]
  13. R. Bittner and K. Meerholz, “Amorphous organic photorefractive materials,” in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds. (Springer, 2007), Vol. 2.
  14. M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into the behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys.104(17), 6834–6842 (1996). [CrossRef]
  15. K. Okamoto, S. Kusabayashi, and H. Mikawa, “The photoconductivity of poly (N-vinylcarbazole). II. Dark conductivity in a sandwich-type cell,” Bull. Chem. Soc. Jpn.46(7), 1953–1959 (1973). [CrossRef]
  16. D. J. Wehenkel, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Influence of injected charge carriers on photocurrents in polymer solar cells,” Phys. Rev. B85(12), 125203 (2012). [CrossRef]
  17. S. Schuessler, R. Richert, and H. Baessler, “Relaxation of second-harmonic generation in guest/host polymers poled by indium-tin oxide sandwich electrodes,” Macromolecules27(15), 4318–4326 (1994). [CrossRef]
  18. O. Ostroverkhova, A. Stickrath, and K. D. Singer, “Electric filed-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers,” J. Appl. Phys.91(12), 9481–9486 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited