OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 4 — Apr. 1, 2013
  • pp: 480–488

Optical properties of wide-band-gap chalcopyrite CuAl(Se0.5S0.5)2 evaluated by thermoreflectance spectroscopy

Ching-Hwa Ho and Chia-Chi Pan  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 4, pp. 480-488 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The band edge and higher-lying interband transitions of CuAl(Se0.5S0.5)2 compound have been characterized using thermoreflectance (TR) measurements at room temperature. Single crystals of CuAl(Se0.5S0.5)2 were grown by chemical vapor transport method using ICl3 as the transport agent. The TR measurement results showed three interband transitions denoted as E1, E2, and E3 detected near the band edge of CuAl(Se0.5S0.5)2 chalcopyrite compound. The lowest-energy transition is the main band-edge transition positioned at E1 = 2.96 eV, the second is E2 = 3.05 eV, and the other higher-energy transition is E3 = 3.202 eV, respectively. Polarized-thermoreflectance (PTR) measurements showed that the E1 and E2 transition features are observed only with the linearly polarized light along the ε|| <11 1 ¯ > (needle axis) direction while the E3 transition largely appears with the electrical field of ε perpendicular (⊥) to the needle axis. The E1 and E2 transitions may originate from the valence-band top while the E3 transition is closely related to the valence-band splitting in the crystal. To characterize the anisotropic properties of electronic structure of CuAl(Se0.5S0.5)2, PTR measurements were carried out over a wide energy range of 2.5-6 eV. The interband transitions belonging to E|| or E polarization are respectively identified. On the basis of experimental analysis, the electronic structure near the fundamental band edge of CuAl(Se0.5S0.5)2 has thus been determined.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:

Original Manuscript: January 30, 2013
Revised Manuscript: March 1, 2013
Manuscript Accepted: March 7, 2013
Published: March 18, 2013

Virtual Issues
Optical Ceramics (2013) Optical Materials Express

Ching-Hwa Ho and Chia-Chi Pan, "Optical properties of wide-band-gap chalcopyrite CuAl(Se0.5S0.5)2 evaluated by thermoreflectance spectroscopy," Opt. Mater. Express 3, 480-488 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. Res. Appl.11(7), 437–443 (2003). [CrossRef]
  2. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” J. Am. Chem. Soc.130(49), 16770–16777 (2008). [CrossRef] [PubMed]
  3. M. L. Albor Aguilera, J. R. Aguilar Hernández, M. A. González Trujillo, and M. Ortega Lopez, “Photoluminescence studies of p-type chalcopyrite AgInS2:Sn,” Sol. Energy Mater. Sol. Cells91(15-16), 1483–1487 (2007). [CrossRef]
  4. S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, and Y. Cui, “Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods,” J. Am. Chem. Soc.131(13), 4962–4966 (2009). [CrossRef] [PubMed]
  5. C. H. Ho, “Thermoreflectance characterization of the band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material,” Appl. Phys. Lett.96(6), 061902 (2010). [CrossRef]
  6. I. Tsuji, H. Kato, and A. Kudo, “Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst,” Angew. Chem. Int. Ed. Engl.44(23), 3565–3568 (2005). [CrossRef] [PubMed]
  7. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, “Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures,” J. Am. Chem. Soc.126(41), 13406–13413 (2004). [CrossRef] [PubMed]
  8. C. H. Ho and C. C. Pan, “Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy,” AIP Adv.2(2), 022123 (2012). [CrossRef]
  9. F. C. Akkari, R. Brini, M. Kanzari, and B. Rezig, “High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient,” J. Mater. Sci.40(21), 5751–5755 (2005). [CrossRef]
  10. B. Mao, C.-H. Chuang, J. Wang, and C. Burda, “Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States,” J. Phys. Chem. C115(18), 8945–8954 (2011). [CrossRef]
  11. Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure,” J. Phys. Chem. C115(5), 1786–1792 (2011). [CrossRef]
  12. S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semiconductor grown by low‐pressure metalorganic chemical‐vapor deposition,” J. Appl. Phys.74(10), 6446–6447 (1993). [CrossRef]
  13. Y. Shim, K. Hasegawa, K. Wakita, and N. Mamedov, “CuAl1-xInxSe2 solid solutions: Dielectric function and inter-band optical transitions,” Thin Solid Films517(4), 1442–1444 (2008). [CrossRef]
  14. M. I. Alonso, J. Pascual, M. Garriga, Y. Kikuno, N. Yamamoto, and K. Wakita, “Optical Properties of CuAlSe2,” J. Appl. Phys.88(4), 1923–1928 (2000). [CrossRef]
  15. M. Bettini, “Reflection measurements with polarization modulation: A method to investigate bandgaps in birefringent materials like I-III-VI2 chalcopyrite compounds,” Solid State Commun.13(5), 599–602 (1973). [CrossRef]
  16. N. N. Syrbu, B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic, “Exciton Spectra and Energy Band Structure of CuAlS2 Crystals,” Physica B405(16), 3243–3247 (2010). [CrossRef]
  17. C. H. Ho, “Single Crystal Growth and Characterization of Copper Aluminum Indium Disulfide Chalcopyrites,” J. Cryst. Growth317(1), 52–59 (2011). [CrossRef]
  18. C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design for Optical Characterization of Layer Semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004). [CrossRef]
  19. D. E. Aspnes, in Handbook on Semiconductors, M. Balkanski, ed. (North Holland, Amsterdam, 1980).
  20. F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng.R10, 275–374 (1993).
  21. J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2,” Phys. Rev. B28(10), 5822–5847 (1983). [CrossRef]
  22. A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil, “Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te),” J. Alloy. Comp.487(1-2), 206–213 (2009). [CrossRef]
  23. J. L. Shay, E. Buehler, and J. H. Wernick, “Electroreflectance Study of the Energy-Band Structure of CdSnP2,” Phys. Rev. B2(10), 4104–4109 (1970). [CrossRef]
  24. J. L. Shay, E. Buehler, and J. H. Wernick, “Optical Properties and Electronic Structure of ZnSiAs2,” Phys. Rev. B3(6), 2004–2011 (1971). [CrossRef]
  25. C. H. Ho, “Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (0≤x≤1) Series Solar Energy Materials,” J. Electrochem. Soc.158(5), H554–H560 (2011). [CrossRef]
  26. S. Shirakata, S. Chichibu, and S. Isomura, “Crystal Growth and Optical Properties of CuAl(SxSe1-x)2 Alloys,” Jpn. J. Appl. Phys.36(Part 1, No. 11), 6645–6649 (1997). [CrossRef]
  27. B. Tell, J. L. Shay, H. M. Kasper, and R. L. Barns, “Valence-Band Structure of CuGaxIn1-xS2 Alloys,” Phys. Rev. B10(4), 1748–1750 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited