OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 4 — Apr. 1, 2013
  • pp: 489–495

Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating

Yinan Zhang, Xi Chen, Zi Ouyang, Hongyan Lu, Baohua Jia, Zhengrong Shi, and Min Gu  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 4, pp. 489-495 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Significant photocurrent enhancement of 0.4 mA/cm2 has been achieved for industrial textured multicrystalline silicon solar cells, due to the light trapping provided by aluminium nanoparticle enhanced antireflection coating. Aluminium nanoparticles support surface plasmon resonances, which can effectively scatter the light into the solar cells. By blue shifting the detrimental Fano resonances away from the important silicon absorption spectrum, aluminium nanoparticles can provide a broadband light absorption enhancement without a reduction at the short wavelengths. Combining the discovery with 75 nm silicon nitride antireflection coating, which can significantly enhance the absorption at the peak solar spectrum, we have achieved the strong broadband light absorption enhancement.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaic Materials

Original Manuscript: February 15, 2013
Revised Manuscript: March 20, 2013
Manuscript Accepted: March 20, 2013
Published: March 21, 2013

Yinan Zhang, Xi Chen, Zi Ouyang, Hongyan Lu, Baohua Jia, Zhengrong Shi, and Min Gu, "Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating," Opt. Mater. Express 3, 489-495 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Mater, Sci. Eng. R40(1), 1–46 (2003). [CrossRef]
  2. M. A. Green, Solar Cells: Operating Principles, Technology and System Application (The University of New South Wales, 2010).
  3. P. Panek, M. Lipinski, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci.40(6), 1459–1463 (2005). [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  6. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  7. M. Gu, Z. Ouyang, B. H. Jia, N. Stokes, X. Chen, N. Fahim, X. P. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics1(3-4), 235–248 (2012). [CrossRef]
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  9. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010). [CrossRef]
  10. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  11. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010). [CrossRef]
  12. N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012). [CrossRef]
  13. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  14. Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012). [CrossRef]
  15. N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett.101(14), 141112 (2012). [CrossRef]
  16. Z. J. Sun, X. L. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett.37(4), 641–643 (2012). [CrossRef] [PubMed]
  17. N. C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles,” J. Appl. Phys.110(4), 046101 (2011). [CrossRef]
  18. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  19. FDTD Solutions, Lumerical Solutions Inc., Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd .
  20. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  21. C. Hägglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92(5), 053110 (2008). [CrossRef]
  22. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010). [CrossRef] [PubMed]
  23. Y. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007). [CrossRef]
  24. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008). [CrossRef] [PubMed]
  25. W. H. Koo, W. Youn, P. Zhu, X. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012). [CrossRef]
  26. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited