OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 4 — Apr. 1, 2013
  • pp: 502–510

Thermal annealing of femtosecond laser written structures in silica glass

Jonathan J. Witcher, Wilbur J. Reichman, Luke B. Fletcher, Neil W. Troy, and Denise M. Krol  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 4, pp. 502-510 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the thermal stability of femtosecond laser modification inside fused silica. Raman and FL spectroscopy show that fs-laser induced non-bridging oxygen hole center (NBOHC) defects completely disappear at 300 °C, whereas changes in Si-O ring structures only anneal out after heat treatment at 800-900 °C. After annealing at 900 °C optical waveguides written inside the glass had completely disappeared whereas more significant damage induced in the glass remained. The results are related to different types of bond rearrangements in the glass network.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Materials Processing

Original Manuscript: January 25, 2013
Revised Manuscript: March 13, 2013
Manuscript Accepted: March 21, 2013
Published: March 27, 2013

Jonathan J. Witcher, Wilbur J. Reichman, Luke B. Fletcher, Neil W. Troy, and Denise M. Krol, "Thermal annealing of femtosecond laser written structures in silica glass," Opt. Mater. Express 3, 502-510 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  3. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006). [CrossRef]
  4. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997). [CrossRef]
  5. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28(24), 2491–2493 (2003). [CrossRef] [PubMed]
  6. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006). [CrossRef] [PubMed]
  7. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express10(19), 978–983 (2002). [CrossRef] [PubMed]
  8. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett.29(5), 468–470 (2004). [CrossRef] [PubMed]
  9. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30(9), 1060–1062 (2005). [CrossRef] [PubMed]
  10. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett.24(18), 1311–1313 (1999). [CrossRef] [PubMed]
  11. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  12. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003). [CrossRef]
  13. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354(2-9), 416–424 (2008). [CrossRef]
  14. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses,” Opt. Express16(24), 19520–19534 (2008). [CrossRef] [PubMed]
  15. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109(2), 023503 (2011). [CrossRef]
  16. E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett.88(11), 111119 (2006). [CrossRef]
  17. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29(12), 1312–1314 (2004). [CrossRef] [PubMed]
  18. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99(12), 123112 (2006). [CrossRef]
  19. D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, “High-temperature light scattering and the glass transition in vitreous silica,” Phys. Rev. B Condens. Matter33(6), 4196–4202 (1986). [CrossRef] [PubMed]
  20. R. Brüning and D. Cottrell, “X-ray and neutron scattering observations of structural relaxation of vitreous silica,” J. Non-Cryst. Solids325(1-3), 6–15 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited