OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 4 — Apr. 1, 2013
  • pp: 511–518

Spinel-derived single mode optical fiber

Anthony Mangognia, Courtney Kucera, Jonathon Guerrier, Joshua Furtick, Thomas Hawkins, Peter D. Dragic, and John Ballato  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 4, pp. 511-518 (2013)
http://dx.doi.org/10.1364/OME.3.000511


View Full Text Article

Enhanced HTML    Acrobat PDF (1471 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A silica-based highly acoustically-anti-guiding optical fiber, fabricated using a molten core approach employing spinel (MgAl2O4) for the first time, is presented. To our knowledge, this is the first truly single mode optical fiber fabricated from a precursor crystal. It is shown that MgO increases the acoustic velocity when added to silica (some physical parameters of MgO are identified) and that the Brillouin gain in the core is less than one third that in the cladding in one of the fibers. This results from a massive acoustic waveguide attenuation term that broadens the spectrum to well over 200 MHz. For the first time, to the best of our knowledge, this also enabled the validation of the intrinsic Brillouin line-width (~20 MHz) of pure silica in fiber form via a direct measurement.

© 2013 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2290) Materials : Fiber materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5830) Scattering : Scattering, Brillouin
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: March 15, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 27, 2013
Published: March 28, 2013

Citation
Anthony Mangognia, Courtney Kucera, Jonathon Guerrier, Joshua Furtick, Thomas Hawkins, Peter D. Dragic, and John Ballato, "Spinel-derived single mode optical fiber," Opt. Mater. Express 3, 511-518 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-4-511


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 627–633 (2012). [CrossRef]
  2. P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express18(10), 10055–10067 (2010). [CrossRef] [PubMed]
  3. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  4. C. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993). [CrossRef]
  5. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009). [CrossRef]
  6. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids355(7), 403–413 (2009). [CrossRef]
  7. V. Lou, T. Mitchell, and A. Heuer, “Graphical displays of the thermodynamics of high-temperature gas-solid reactions and their application to oxidation of metals and evaporation of oxides,” J. Am. Ceram. Soc.68(2), 49–58 (1985). [CrossRef]
  8. J. B. Heaney, G. Hass, and M. McFarland, “Spinel (Al2O3:MgO): refractive-index variations and lack of stoichiometry in evaporated films,” Appl. Opt.20(14), 2335–2336 (1981). [CrossRef] [PubMed]
  9. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004). [CrossRef]
  10. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009). [CrossRef] [PubMed]
  11. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B19(12), 6583–6592 (1979). [CrossRef]
  12. P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011). [CrossRef]
  13. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids113(1), 58–64 (1989). [CrossRef]
  14. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009). [CrossRef]
  15. S. V. Sinogeikin and J. D. Bass, “Single-crystal elasticity of MgO at high pressure,” Phys. Rev. B59(22), R14141–R14144 (1999). [CrossRef]
  16. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express2(11), 1641–1654 (2012). [CrossRef]
  17. G. Gutiérrez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3,” Phys. Rev. B65(10), 104202 (2002). [CrossRef]
  18. W. Kingery, H. Bowen, and D. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1976).
  19. A. von Hippel, Dielectrics and Waves (John Wiley & Sons, 1956).
  20. G. Rankin and H. Merwin, “The ternary system MgO – Al2O3 – SiO2,” Am. J. Sci.s4-45(268), 301–325 (1918). [CrossRef]
  21. N. Bowen and O. Andersen, “The binary system MgO – SiO2,” Am. J. Sci.s4-37(222), 487–500 (1914). [CrossRef]
  22. J. Greig, “Immiscibility in silicate melts: Part I,” Am. J. Sci.s5-13(73), 1–44 (1927). [CrossRef]
  23. P. Wu, G. Eriksson, A. Pelton, and M. Blander, “Prediction of the thermodynamics properties and phase diagrams of silicate systems – evaluation of the FeO – MgO – SiO2 system,” ISIJ Int.33(1), 26–35 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited