OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 533–545

Photo-induced refraction of nanoparticulate organic-inorganic TiO2-pHEMA hybrids

Andrii Uklein, Pavlo Gorbovyi, Mamadou Traore, Luc Museur, and Andrey Kanaev  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 5, pp. 533-545 (2013)
http://dx.doi.org/10.1364/OME.3.000533


View Full Text Article

Enhanced HTML    Acrobat PDF (1424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on photoinduced modifications of the refractive index of nanoparticulate TiO2-pHEMA organic-inorganic hybrids. The samples with titania concentration ranging from 0.88·1020 to 17.6·1020 cm−3 were irradiated and analyzed with UV light at 375 nm. A reduction of the refractive index is observed in all samples. Although the photoinduced refraction was stronger in samples with higher titania concentration, its normalized value per Ti3+ center a0 = −2.4·10−23 cm3 remained constant. The change of refractive index correlates with the material photochromic response due to the accumulation of polaronic Ti3+ centers in the material.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.5320) Materials : Photorefractive materials
(160.4236) Materials : Nanomaterials

ToC Category:
Nanomaterials

History
Original Manuscript: January 2, 2013
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 7, 2013
Published: April 1, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Citation
Andrii Uklein, Pavlo Gorbovyi, Mamadou Traore, Luc Museur, and Andrey Kanaev, "Photo-induced refraction of nanoparticulate organic-inorganic TiO2-pHEMA hybrids," Opt. Mater. Express 3, 533-545 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-5-533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Gómez-Romero and C. Sanchez, eds., Functional Hybrid Materials (Wiley-VCH Verlag GmbH & Co., 2003).
  2. L. Nicole, L. Rozes, and C. Sanchez, “Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies,” Adv. Mater.22(29), 3208–3214 (2010). [CrossRef] [PubMed]
  3. C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev.40(2), 696–753 (2011). [CrossRef] [PubMed]
  4. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films442(1–2), 194–200 (2003). [CrossRef]
  5. R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, “Solid-state lasers based on inorganic–organic hybrid materials obtained by combined sol–gel polymer technology,” Polym. Adv. Technol.15(6), 291–301 (2004). [CrossRef]
  6. D. J. Kang and B.-S. Bae, “Photo-imageable sol-gel hybrid materials for simple fabrication of micro-optical elements,” Acc. Chem. Res.40(9), 903–912 (2007). [CrossRef] [PubMed]
  7. R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater.32(11), 1397–1409 (2010). [CrossRef]
  8. K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: a review on photoinduced phenomena,” Phys. Status Solidi B246(8), 1744–1757 (2009). [CrossRef]
  9. S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B Condens. Matter41(17), 12250–12259 (1990). [CrossRef] [PubMed]
  10. A. I. Kuznetsov, O. Kameneva, N. Bityurin, L. Rozes, C. Sanchez, and A. Kanaev, “Laser-induced photopatterning of organic-inorganic TiO2-based hybrid materials with tunable interfacial electron transfer,” Phys. Chem. Chem. Phys.11(8), 1248–1257 (2009). [CrossRef] [PubMed]
  11. O. Kameneva, A. I. Kuznestov, L. A. Smirnova, L. Rozes, C. Sanchez, A. Alexandrov, N. Bityurin, K. Chhor, and A. Kanaev, “New photoactive hybrid organic-inorganic materials based on titanium-oxo-PHEMA nanocomposites exhibiting mixed valence properties,” J. Mater. Chem.15(33), 3380–3383 (2005). [CrossRef]
  12. E. Fadeeva, J. Koch, B. Chichkov, A. Kuznetsov, O. Kameneva, N. Bityurin, C. Sanchez, and A. Kanaev, “Laser imprinting of 3D structures in gel-based titanium oxide organic-inorganic hybrids,” Appl. Phys., A Mater. Sci. Process.84(1-2), 27–30 (2006). [CrossRef]
  13. P. Gorbovyi, A. Uklein, S. Tieng, O. Brinza, M. Traore, K. Chhor, L. Museur, and A. Kanaev, “Novel nanostructured pHEMA-TiO2 hybrid materials with efficient light-induced charge separation,” Nanoscale3(4), 1807–1812 (2011). [CrossRef] [PubMed]
  14. N. Bityurin, A. I. Kuznetsov, and A. Kanaev, “Kinetics of UV-induced darkening of titanium-oxide gels,” Appl. Surf. Sci.248(1–4), 86–90 (2005). [CrossRef]
  15. L. Museur, P. Gorbovyi, M. Traore, A. Kanaev, L. Rozes, and C. Sanchez, “Luminescence properties of pHEMA-TiO2 gels based hybrids materials,” J. Lumin.132(5), 1192–1199 (2012). [CrossRef]
  16. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1–3), 1–12 (2003). [CrossRef]
  17. N. Mehta, “Applications of chalcogenide glasses in electronics and optoelectronics: a review,” J. Sci. Ind. Res. (India)65(10), 777–786 (2006).
  18. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt.41(22), 4630–4637 (2002). [CrossRef] [PubMed]
  19. K. Fedus and G. Boudebs, “Determination of photo-induced changes in linear optical coefficients by the Z-scan technique,” J. Opt. Soc. Am. B26(11), 2171–2175 (2009). [CrossRef]
  20. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  21. A. Afanasiev, A. Alexandrov, N. Agareva, N. Sapogova, L. Smirnova, and N. Bityurin, “UV induced of linear and non-linear IR optical properties of dielectrics for photonic applications,” presented in FLAMN-10, St. Petersburg, Russia (2010).
  22. V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst.426(1), 231–241 (2005). [CrossRef]
  23. J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003). [CrossRef]
  24. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990). [CrossRef]
  25. N. A. Deskins and M. Dupuis, “Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization,” Phys. Rev. B75(19), 195212 (2007). [CrossRef]
  26. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011). [CrossRef]
  27. R. G. Hunsperger, Integrated Optics (Springer, 2009).
  28. T. Keiji, “Photo-induced phenomena in chalcogenide glass: Comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids352(23–25), 2580–2584 (2006).
  29. A. Ljungstrom and T. Monro, “Observation of light-induced refractive index reduction in bulk glass and application to the formation of complex waveguides,” Opt. Express10(5), 230–235 (2002). [CrossRef] [PubMed]
  30. L. Merhari, Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic And Biomedical Applications (Springer, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited